15.(1)化簡$\frac{\sqrt{1-2sin10°cos10°}}{sin170°-\sqrt{1-si{n}^{2}170°}}$;
(2)已知tanθ=2,求2+sinθcosθ-cos2θ的值.

分析 (1)利用同角三角函數(shù)基本關(guān)系式把分子中根式內(nèi)部轉(zhuǎn)化為完全平方式,把分母公式化為余弦開方,則答案可求;
(2)由2+sinθcosθ-cos2θ=$\frac{2(si{n}^{2}θ+co{s}^{2}θ)+sinθcosθ-co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$,然后轉(zhuǎn)化為正切求解.

解答 解:(1)簡$\frac{\sqrt{1-2sin10°cos10°}}{sin170°-\sqrt{1-si{n}^{2}170°}}$=$\frac{{\sqrt{{{(sin{{10}°}-cos{{10}°})}^2}}}}{{sin{{10}°}-cos{{10}°}}}=\frac{{cos{{10}°}-sin{{10}°}}}{{sin{{10}°}-cos{{10}°}}}=-1$;
(2)2+sinθcosθ-cos2θ=$\frac{2(si{n}^{2}θ+co{s}^{2}θ)+sinθcosθ-co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$
=$\frac{2si{n}^{2}θ+sinθcosθ+co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2ta{n}^{2}θ+tanθ+1}{1+ta{n}^{2}θ}$
=$\frac{{2×{2^2}+2+1}}{{1+{2^2}}}=\frac{11}{5}$.

點評 本題考查三角函數(shù)的化簡求值,考查同角三角函數(shù)基本關(guān)系式的應用,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.(1)將三進制數(shù)10221(3)化為二進制數(shù);
(2)已知△ABC的三個頂點坐標分別為A(2,3)、B(-2,0)、C(2,0),求∠A平分線所在直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.計算:${({\frac{{\sqrt{3}+\sqrt{2}}}{{\sqrt{3}-\sqrt{2}}}})^0}+{(0.0016)^{-0.25}}+\sqrt{3-2\sqrt{2}}$=5+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.方程x=l+sinx的解的個數(shù)有( 。﹤.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.15°角的弧度數(shù)是( 。
A.$\frac{π}{15}$B.$\frac{π}{12}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)集合A={x|x2-5x-6=0},B={x|y=log2(2-x)},則A∩(∁RB)=(  )
A.{2,3}B.{-1,6}C.{3}D.{6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),兩個焦點為F1(-2,0),F(xiàn)2(2,0),P是橢圓上的動點,且|PF1||PF2|的最大值為6.
(1)求橢圓方程;
(2)過左焦點的直線l交橢圓C與M、N兩點,且滿足$\overrightarrow{OM}•\overrightarrow{ON}sinθ=\frac{{4\sqrt{6}}}{3}cosθ$$(θ≠\frac{π}{2})$,求直線l的方程(其中∠MON=θ,O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知焦點在x軸上的雙曲線C的兩條漸近線相互垂直,且C的一個焦點與點$A(1,\sqrt{2}-1)$關(guān)于直線y=x-1對稱.
(1)求雙曲線C的方程;
(2)是否存在直線y=kx+b與雙曲線C交于P、Q兩點,使得PQ恰被點$(\frac{2}{3},1)$平分?若存在求出直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知二次函數(shù)f(x)=ax2+bx+c滿足2a+$\frac{c}{2}$>b且2c<1,則含有f(x)的零點的一個區(qū)間是( 。
A.(0,2)B.(-1,0)C.(0,1)D.(-2,0)

查看答案和解析>>

同步練習冊答案