正整數(shù)按下列方法分組:{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},…,記第n組各數(shù)之和為An;由自然數(shù)的立方構(gòu)成下列數(shù)組:{03,13},{13,23},{23,33},{33,43},…,記第n組中兩數(shù)之和為Bn,則An-Bn=
 
分析:觀察已知數(shù)列的特點(diǎn)可知,每個(gè)數(shù)組有2n-1個(gè)數(shù),且這些數(shù)構(gòu)成以1為公差的等差數(shù)列,且每組數(shù)的最后一個(gè)數(shù)為n2,根據(jù)等差數(shù)列的前n和公式可求An,而Bn=(n-1)3+n3,利用立方和公式進(jìn)行變形,從而可求
解答:解:由題意可得,第n組數(shù)據(jù)構(gòu)成以1為公差的等差數(shù)列,共有2n-1個(gè)數(shù),且最后一個(gè)數(shù)位n2
則由等差數(shù)列的通項(xiàng)公式可得第n組數(shù)的第一個(gè)數(shù)為:n2-2n+2
由等差數(shù)列的前n項(xiàng)和公式可得,An=
2n2-2n+2
2
•(2n-1)=(2n-1)(n2-n+1)

Bn=(n-1)3+n3=(2n-1)[((n-1)2-n(n-1)+n2]=(2n-1)(n2-n+1)
An-Bn=0
故答案為:0
點(diǎn)評(píng):本題主要考查了等差數(shù)列的和公式在求和中的應(yīng)用,解題的關(guān)鍵是根據(jù)已知所給的數(shù)組觀察發(fā)現(xiàn)正整數(shù)組中,第n組數(shù)據(jù)構(gòu)成以1為公差的等差數(shù)列,共有2n-1個(gè)數(shù),且最后一個(gè)數(shù)位n2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正整數(shù)按下列方法分組:{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},…記第n組中各數(shù)之和為An;由自然數(shù)的立方構(gòu)成下列數(shù)組:{03,13},{13,23},{23,33},{33,43},…記第n組中后一個(gè)數(shù)與前一個(gè)數(shù)的差為Bn,則An+Bn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三2月月考理科數(shù)學(xué) 題型:填空題

正整數(shù)按下列方法分組:記第組中各數(shù)之和為;由自然數(shù)的立方構(gòu)成下列數(shù)組:記第組中后一個(gè)數(shù)與前一個(gè)數(shù)的差為          

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三上學(xué)期11月月考理科數(shù)學(xué)卷 題型:填空題

正整數(shù)按下列方法分組:,,……,

記第n組中各數(shù)之和為;由自然數(shù)的立方構(gòu)成下列數(shù)組:

,,,……,

記第n組中后一個(gè)數(shù)與前一個(gè)數(shù)的差為,則        

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

正整數(shù)按下列方法分組:{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},…,記第n組各數(shù)之和為An;由自然數(shù)的立方構(gòu)成下列數(shù)組:{03,13},{13,23},{23,33},{33,43},…,記第n組中兩數(shù)之和為Bn,則An-Bn=   

查看答案和解析>>

同步練習(xí)冊(cè)答案