19.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{x-1}},x>1\\ tan\frac{πx}{3},x≤1\end{array}\right.$則$f(\frac{1}{f(2)})$=$\frac{\sqrt{3}}{3}$.

分析 由已知得f(2)=22-1=2,從而$f(\frac{1}{f(2)})$=f($\frac{1}{2}$)=tan$\frac{π}{6}$,由此能求出結(jié)果.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}{2^{x-1}},x>1\\ tan\frac{πx}{3},x≤1\end{array}\right.$
∴f(2)=22-1=2,
$f(\frac{1}{f(2)})$=f($\frac{1}{2}$)=tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{{\sqrt{3}}}{3}$.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$M:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn)分別為F1、F2,|F1F2|=2c.若雙曲線M的右支上存在點(diǎn)P,使$\frac{a}{{sin∠P{F_1}{F_2}}}=\frac{3c}{{sin∠P{F_2}{F_1}}}$,則雙曲線M的離心率的取值范圍為( 。
A.$(1,\frac{{2+\sqrt{7}}}{3})$B.$(1,\frac{{2+\sqrt{7}}}{3}]$C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線過點(diǎn)(2,3),漸進(jìn)線方程為y=±$\sqrt{3}$x,則雙曲線的標(biāo)準(zhǔn)方程是( 。
A.$\frac{{7{x^2}}}{16}-\frac{y^2}{12}=1$B.$\frac{y^2}{3}-\frac{x^2}{2}=1$C.${x^2}-\frac{y^2}{3}=1$D.$\frac{{3{y^2}}}{23}-\frac{x^2}{23}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{y^2}{a^2}-\frac{x^2}{4}=1$過點(diǎn)(2,-1),則雙曲線的離心率為(  )
A.$\sqrt{2}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.現(xiàn)階段全國多地空氣質(zhì)量指數(shù)“爆表”.為探究車流量與PM2.5濃度是否相關(guān),現(xiàn)對(duì)北方某中心城市的車流量最大的地區(qū)進(jìn)行檢測(cè),現(xiàn)采集到12月某天7個(gè)不同時(shí)段車流量與PM2.5濃度的數(shù)據(jù),如下表:
車流量x(萬輛/小時(shí))1234567
PM2.5濃度y(微克/立方米)30363840424450
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)規(guī)定當(dāng)PM2.5濃度平均值在(0,50],空氣質(zhì)量等級(jí)為優(yōu);當(dāng)PM2.5濃度平均值在(50,100],空氣質(zhì)量等級(jí)為良;為使該城市空氣質(zhì)量為優(yōu)和良,利用該回歸方程,預(yù)測(cè)要將車流量控制在每小時(shí)多少萬輛內(nèi)(結(jié)果以萬輛做單位,保留整數(shù)).
附:回歸直線方程:$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y=\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知R為實(shí)數(shù)集,集合A={x|x2-2x≥0},B={x|x>1},則(∁RA)∩B=( 。
A.(0,1)B.(0,1]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+2y-5≥0\\ x-3y+5≥0\\ kx-y-3k≤0\end{array}\right.$,若目標(biāo)函數(shù)z1=3x+y的最小值的7倍與z2=x+7y的最大值相等,則實(shí)數(shù)k的值為( 。
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)$f(x)=2sin({ωx+φ})+1({ω>0,|φ|<\frac{π}{2}}),f(α)=-1,f(β)=1$,若|α-β|的最小值為$\frac{3π}{4}$,且f(x)的圖象關(guān)于點(diǎn)$({\frac{π}{4},1})$對(duì)稱,則函數(shù)f(x)的單調(diào)遞增區(qū)間是( 。
A.$[{-\frac{π}{2}+2kπ,π+2kπ}],k∈Z$B.$[{-\frac{π}{2}+3kπ,π+3kπ}],k∈Z$
C.$[{π+2kπ,\frac{5π}{2}+2kπ}],k∈Z$D.$[{π+3kπ,\frac{5π}{2}+3kπ}],k∈Z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在△ABC中,N、P分別是AC、BN的中點(diǎn),設(shè)$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,則$\overrightarrow{AP}$=( 。
A.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$B.-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$C.-$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$D.$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$

查看答案和解析>>

同步練習(xí)冊(cè)答案