18.已知二次函數(shù)f(x)=ax2+bx+c,且關(guān)于x的方程f(x)=x有兩個(gè)相等的根為1,設(shè)函數(shù)f(x)在[-2,2]上的最大值和最小值分別是M,m,記h(a)=M+m,當(dāng)a≥1時(shí),求h(a)的最小值.

分析 根據(jù)韋達(dá)定理得到b=1-2a,c=a,即可得到函數(shù)關(guān)于參數(shù)a的函數(shù),根據(jù)二次函數(shù)的性質(zhì)即可求出關(guān)于a的函數(shù)h(a),根據(jù)函數(shù)的單調(diào)性即可求出最小值.

解答 解:由題意得:方程ax2+(b-1)x+c=0存在相等的實(shí)數(shù)根x1=x2=1,
∴$\left\{\begin{array}{l}{△=(b-1)^{2}-4ac=0}\\{a+b-1+c=0}\end{array}\right.$,則$\left\{\begin{array}{l}{b=1-2a}\\{c=a}\end{array}\right.$,
∴f(x)=ax2+(1-2a)x+a=a(x-$\frac{2a-1}{2a}$)2+1-$\frac{1}{4a}$,
對(duì)稱軸x=1-$\frac{1}{2a}$∈[$\frac{1}{2}$,1),
則x∈[-2,2]時(shí),$h(a)=M+m=f(-2)+f(1-\frac{1}{2a})=9a-\frac{1}{4a}-1$,
而h(a)在[1,+∞)上是增函數(shù),
∴$h{(a)_{min}}=\frac{31}{4}$.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì)和韋達(dá)定理,以及函數(shù)的單調(diào)性和最值的問(wèn)題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知下列語(yǔ)句:①平行四邊形不是梯形;②$\sqrt{3}$是無(wú)理數(shù);③方程9x2-1=0的解是x=±$\frac{1}{3}$;④3a>a;⑤2015年8月1日是中國(guó)人民解放軍建軍87周年的日子.其中命題的個(gè)數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知α∈($\frac{π}{2}$,π),且sinα+cosα=-$\frac{{\sqrt{3}}}{3}$,則cos2α=(  )
A.$\frac{{\sqrt{5}}}{3}$B.$-\frac{{\sqrt{5}}}{3}$C.$\frac{{2\sqrt{5}}}{3}$D.$-\frac{{2\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.等差數(shù)列{an}中,Sn為其前n項(xiàng)和,且S9=a4+a5+a6+72,則a3+a7=( 。
A.22B.24C.25D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系下,直線l:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸為非負(fù)半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ-4cosθ=0.
(Ⅰ)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)的圖象向左$\frac{π}{4}$個(gè)單位后,所得到的圖象關(guān)于y軸對(duì)稱,則ω的最小值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知定義在R上的奇函數(shù)f(x)滿足f(x)=f(2-x),且f(-1)=2,則f(1)+f(2)+f(3)+…+f(2017)的值為( 。
A.1B.0C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,已知二次函數(shù)y=x2+bx+c過(guò)點(diǎn)A(1,0),C(0,-3)
(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點(diǎn)P使△ABP的面積為10,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.等差數(shù)列{an}的前n項(xiàng)和為Sn=$\frac{n}{2}$(3n+5),正項(xiàng)等比數(shù)列{bn}中,b2=4,b1b7=256.
(Ⅰ)求{an}與{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=anbn,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案