分析 (1)根據(jù)一元二次不等式的解法解得即可,
(2)根據(jù)一一元二次不等式和一元二次方程的關(guān)系,根據(jù)韋達(dá)定理即可求出.
解答 解:(1)當(dāng)a=-2時(shí),-2x2-3x+2>0,即2x2+3x-2<0,即(2x+1)(x-2)<0,解得-$\frac{1}{2}$<x<2
上述不等式的解集為$\{x|-2<x<\frac{1}{2}\}$;
(2)∵上述不等式的解集為{x|x<1或x>b},
∴1,b是方程ax2-3x+2=0的兩個(gè)根,
∴1+b=$\frac{3}{a}$,b=$\frac{2}{a}$,a>0
∴a=1,b=2
點(diǎn)評 本題考查了不等式的解法以及不等式解集的應(yīng)用,屬于基礎(chǔ)題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$,-1 | B. | $\frac{1}{2}$,1 | C. | $\frac{1}{2}$,-1 | D. | -$\frac{1}{2}$,1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | [1,2) | C. | (0,1] | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-∞,-\sqrt{3}}]∪[{\sqrt{3},+∞})$ | B. | $({-∞,-\sqrt{3}})∪({\sqrt{3},+∞})$ | C. | $[{-\sqrt{3},\sqrt{3}}]$ | D. | $({-\sqrt{3},\sqrt{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{6}$ | B. | 向左平移 $\frac{π}{12}$ | C. | 向右平移 $\frac{π}{12}$ | D. | 向左平移$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60 | B. | 65 | C. | 80 | D. | 81 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com