3.從1,2,3,4,5這5個(gè)數(shù)中一次性隨機(jī)地取兩個(gè)數(shù),則所取兩個(gè)數(shù)之和能被3整除的概率是( 。
A.$\frac{2}{5}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 先求出基本事件總數(shù),再由列舉法求出所取兩個(gè)數(shù)之和能被3整除包含的基本事件個(gè)數(shù),由此能求出所取兩個(gè)數(shù)之和能被3整除的概率.

解答 解:從1,2,3,4,5這5個(gè)數(shù)中一次性隨機(jī)地取兩個(gè)數(shù),
基本事件總數(shù)n=${C}_{5}^{2}$=10,
所取兩個(gè)數(shù)之和能被3整除包含的基本事件有:
(1,2),(1,5),(2,4),(4,5),
共有m=4個(gè),
∴所取兩個(gè)數(shù)之和能被3整除的概率p=$\frac{m}{n}=\frac{4}{10}=\frac{2}{5}$.
故選:A.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)為(0,2),且離心率為$\frac{\sqrt{3}}{2}$.求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.執(zhí)行下邊的程序框圖,則輸出的n等于( 。
A.4B.5C.6D.7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若y=f(x)為一次函數(shù),且f[f(x)]=x-2,則f(x)=x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.命題“?x>0,使2x>3x”的否定是( 。
A.?x>0,使2x≤3xB.?x>0,使2x≤3xC.?x≤0,使2x≤3xD.?x≤0,使2x≤3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在等差數(shù)列{an}中,a1+a2=7,a3=8.令bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知全集U=R,集合A={x|x<-1},B={x|2a<x<a+3},
(1)若a=-1,求A∩B
(2)若B⊆∁RA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{lnx+a}{x}(a∈R)$,若a=1
(1)求f(x)的極值;     
(2)求函數(shù)f(x)在區(qū)間(0,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=2sin(2x+φ)的周期為π.

查看答案和解析>>

同步練習(xí)冊(cè)答案