1.不等式$\frac{{{x^2}(x+1)}}{{-{x^2}-5x+6}}$≤0的解集為( 。
A.{x|-6<x≤-1或x>1}B.{x|-6<x≤-1或x=0或x>1}
C.{x|x<-6或-1≤x<1}D.{x|x<-6或-1≤x<1且x≠0}

分析 由題意,不等式等價于$\left\{\begin{array}{l}{{x}^{2}(x+1)(-{x}^{2}-5x+6)≤0}\\{-{x}^{2}-5x+6≠0}\end{array}\right.$,即可得出結(jié)論.

解答 解:由題意,不等式等價于$\left\{\begin{array}{l}{{x}^{2}(x+1)(-{x}^{2}-5x+6)≤0}\\{-{x}^{2}-5x+6≠0}\end{array}\right.$,
解得-6<x≤-1或x=0或x>1,
故選:B.

點評 本題考查不等式的解法,考查學(xué)生的計算能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列結(jié)論中正確的有①④(寫出正確命題的序號)
①命題p:“?x∈R,x2-2≥0”的否定形式為?p:“?x∈R,x2-2<0”;
②“平面向量$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角”的充分必要條件是“$\overrightarrow a•\overrightarrow b<0$”;
③命題“若a-b=1,則${a^2}+{b^2}>\frac{1}{2}$”的否命題是真命題;
④在△ABC中,“sinA=sinB”是“△ABC為等腰三角形”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知2a=3,3b=8,則ab=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某學(xué)校餐廳每天供應(yīng)500名學(xué)生用餐,每星期一有A,B兩種菜可供選擇.調(diào)查資料表明,凡是在星期一選A種菜的學(xué)生,下星期一會有20%改選B種菜;而選B種菜的學(xué)生,下星期一會有30%改選A種菜,用an,bn分別表示在第n個星期的星期一選A種菜和選B種菜的學(xué)生人數(shù),若a1=300,則:
(1)求a2的值;
(2)判斷數(shù)列{an-300}是否常數(shù)數(shù)列,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{2}$x2-(a2-a)lnx-x(a<0),且函數(shù)f(x)在x=2處取得極值.
(I)求曲線y=f(x)在點(1,f(1))處的切線方程;
(II)求函數(shù)f(x)在區(qū)間[1,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若矩形ABCD中AB邊的長為2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的值等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.關(guān)于兩平面垂直有下列命題,其中錯誤的是(  )
A.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
B.如果平面α與平面β不垂直也不重合,那么平面α內(nèi)一定存在直線平行于平面β
C.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線不垂直于平面β
D.如果平面α⊥平面β,那么平面α內(nèi)的所有直線都垂直于平面β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.學(xué)校里開運動會,設(shè)全集U為所有參加運動會的學(xué)生,
A={x|x是參加一百米跑的學(xué)生},
B={x|x是參二百米跑的學(xué)生},
C={x|x是參加四百米跑的學(xué)生},
學(xué)校規(guī)定,每個參加上述比賽的同學(xué)最多只能參加兩項,下列集合運算能說明這項規(guī)定的是      ( 。
A.(A∪B)∪C=UB.(A∪B)∩C=∅C.(A∩B)∩C=∅D.(A∩B)∪C=C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.命題“若a>1且b>1,則a+b>2且ab>1”的逆否命題是( 。
A.若a+b≤2且ab≤1,則a≤1且b≤1B.若a+b≤2且ab≤1,則a≤1或b≤1
C.若a+b≤2或ab≤1,則a≤1且b≤1D.若a+b≤2或ab≤1,則a≤1或b≤1

查看答案和解析>>

同步練習(xí)冊答案