【題目】如圖,已知點是橢圓上的任意一點,直線與橢圓交于,兩點,直線,的斜率都存在.

1)若直線過原點,求證:為定值;

2)若直線不過原點,且,試探究是否為定值.

【答案】(1)見解析(2),詳見解析

【解析】

1)設(shè),,由橢圓對稱性得,把點,的坐標都代入橢圓得到兩個方程,再相減,得到兩直線斜率乘積的表達式;

2)設(shè),,,則,由得:,進而得到直線的方程,再與橢圓方程聯(lián)立,利用韋達定理得到坐標之間的關(guān)系,最后整體代入消元,得到為定值.

1)當(dāng)過原點時,設(shè),,由橢圓對稱性得,

都在橢圓上,,

兩式相減得:,即

2)設(shè),,則,∵,

,設(shè)直線的方程為(),

聯(lián)立方程組消去

整理得

在橢圓上,∴,

上式可化為

,

,

,

,

;

(定值).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某中學(xué)甲、乙兩班各隨機抽取 名同學(xué),測量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計甲、乙兩班同學(xué)的身高情況,則下列結(jié)論正確的是( )

A. 甲班同學(xué)身高的方差較大 B. 甲班同學(xué)身高的平均值較大

C. 甲班同學(xué)身高的中位數(shù)較大 D. 甲班同學(xué)身高在 以上的人數(shù)較多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四個正方體中,是正方體的一條體對角線,點分別為其所在棱的中點,能得出平面的圖形為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是邊長為2的正方形,點是棱的中點.

1)證明:平面.

2)若三棱錐的體積為4,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】羽毛球比賽中采用每球得分制,即每回合中勝方得1分,負方得0分,每回合由上回合的勝方發(fā)球.設(shè)在甲、乙的比賽中,每回合發(fā)球,發(fā)球方得1分的概率為0.6,各回合發(fā)球的勝負結(jié)果相互獨立.若在一局比賽中,甲先發(fā)球.

1)求比賽進行3個回合后,甲與乙的比分為的概率;

2表示3個回合后乙的得分,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲盒內(nèi)有大小相同的個紅球和個黑球,乙盒內(nèi)有大小相同的個紅球和個黑球.現(xiàn)從甲、乙兩個盒內(nèi)各任取個球.

1)求取出的個球中恰有個紅球的概率;

2)設(shè)為取出的個球中紅球的個數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寒假即將到來,某賓館有50個房間供游客住宿,當(dāng)每個房間的房價為每天180元時,房間會全部住滿.當(dāng)每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每在支出20元的各種費用(人工費,消耗費用等等).受市場調(diào)控,每個房間每天的房價不得高于340.設(shè)每個房間的房價每天增加x(x10的正整數(shù)倍)

(1)設(shè)賓館一天的利潤為W, Wx的函數(shù)關(guān)系式;

(2)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若上恒成立,求實數(shù)的取值范圍;

2)若函數(shù),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx

1)求f(﹣1+f3)的值;

2)求證:fx+1)為奇函數(shù);

3)若銳角α滿足f2sinα+fcosα)>0,求α的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案