分析 (1)根據(jù)導(dǎo)數(shù)的運(yùn)算法則求出函數(shù)的導(dǎo)數(shù)即可;
(2)求出a的值,解故導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可;
(3)根據(jù)二次函數(shù)的性質(zhì)得到關(guān)于a的不等式組,解出即可.
解答 解:(1)由原式得f(x)=x3-ax2-4x+4a,
∴f'(x)=3x2-2ax-4.
(2)由f'(-1)=0,得$a=\frac{1}{2}$,
所以$f(x)={x^3}-\frac{1}{2}{x^2}-4x+2$,
f'(x)=3x2-x-4.
由f'(x)=0,得$x=\frac{4}{3}$或x=-1.
又$f({\frac{4}{3}})=-\frac{50}{27}$,$f(-1)=\frac{9}{2}$,f(-2)=0,f(2)=0,
∴f(x)在[-2,2]上的最大值為$\frac{9}{2}$,最小值為$-\frac{50}{27}$.
(3)f'(x)=3x2-2ax-4的圖象為開(kāi)口向上且過(guò)點(diǎn)(0,-4)的拋物線,
由條件得f'(-2)≥0,f'(2)≥0,
即$\left\{\begin{array}{l}4a+8≥0\\ 8-4a≥0.\end{array}\right.$∴-2≤a≤2,
∴a的取值范圍為[-2,2].
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{x^2}{12}+\frac{y^2}{11}=1$ | B. | $\frac{x^2}{36}-\frac{y^2}{35}=1$ | C. | $\frac{x^2}{3}-\frac{y^2}{2}=1$ | D. | $\frac{x^2}{3}+\frac{y^2}{2}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 26 | B. | 24 | C. | 20 | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 720 | B. | 120 | C. | 144 | D. | 192 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com