16.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_3}x\\{x^2}\\{3^x}\end{array}\right.$$\begin{array}{l}x>1\\-1<x≤1\\ x≤-1\end{array}$,則$f({-f({\sqrt{3}})})+f({f(0)})+f({\frac{1}{{f({-1})}}})$=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.$\frac{5}{4}$

分析 先分別求出f($\sqrt{3}$)=$lo{g}_{3}\sqrt{3}$=$\frac{1}{2}$,f(0)=02=0,f(-1)=${3}^{-1}=\frac{1}{3}$,從而$f({-f({\sqrt{3}})})+f({f(0)})+f({\frac{1}{{f({-1})}}})$=f(-$\frac{1}{2}$)+f(0)+f(3),由此能求結(jié)果.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}{log_3}x\\{x^2}\\{3^x}\end{array}\right.$$\begin{array}{l}x>1\\-1<x≤1\\ x≤-1\end{array}$,
∴f($\sqrt{3}$)=$lo{g}_{3}\sqrt{3}$=$\frac{1}{2}$,
f(0)=02=0,
f(-1)=${3}^{-1}=\frac{1}{3}$,
∴$f({-f({\sqrt{3}})})+f({f(0)})+f({\frac{1}{{f({-1})}}})$
=f(-$\frac{1}{2}$)+f(0)+f(3)
=$(-\frac{1}{2})^{2}$+02+log33
=$\frac{5}{4}$.
故選:D.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=-x2+6x+a2-1,那么下列式子中正確的是( 。
A.$f(\sqrt{2})<f(3)<f(4)$B.$f(3)<f(\sqrt{2})<f(4)$C.$f(\sqrt{2})<f(4)<f(3)$D.$f(3)<f(4)<f(\sqrt{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.log39=( 。
A.5B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}滿足a1=3且an+1=4an+3(n∈N+),則數(shù)列{an}的通項公式為an=4n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求證$\frac{\frac{1}{sin(-α)}-sin(180°+α)}{\frac{1}{cos(540°-α)}+cos(360°-α)}$=$\frac{1}{{tan}^{3}α}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=cos x的定義域為[a,b],值域為[-$\frac{1}{2}$,1],則b-a的值不可能是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.πD.$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若a+b+c=1,且a,b,c為非負實數(shù),求證:$\sqrt{a}$+$\sqrt$+$\sqrt{c}$≤$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,某人為了測量某建筑物兩側(cè)A.B間的距離(在A,B處相互看不到對方),選定了一個可看到A、B兩點的C點進行測量,你認為測量時應(yīng)測量的數(shù)據(jù)是a,b,γ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知以點C(t,$\frac{2}{t}$)(t>0)為圓心的圓經(jīng)過原點O,且與x軸交于點A,與y軸交于點B.
(Ⅰ)求證:△AOB的面積為定值.
(Ⅱ)設(shè)直線2x+y-4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.
(Ⅲ)在(Ⅱ)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標.

查看答案和解析>>

同步練習(xí)冊答案