7.log39=(  )
A.5B.2C.3D.4

分析 根據(jù)對數(shù)的運算性質(zhì)的計算即可

解答 解:log39=log332=2log33=2,
故選:B

點評 本題考查了對數(shù)的運算性質(zhì),屬于基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.現(xiàn)有12張不同的卡片,其中紅色、黃色、藍色、綠色卡片各3張,從中任取3張,要求這3張卡片不能是同一種顏色,且紅色卡片至多1張,不同取法的種數(shù)為189.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求B點在AM上,D點在AN上,且對角線MN過點C,已知AB=2米,AD=1米.
(1)要使矩形AMPN的面積大于9平方米,則DN的長應在什么范圍內(nèi)?
(2)當DN的長度為多少時,矩形花壇AMPN的面積最小?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列命題中,真命題的個數(shù)為( 。
①若a,b,c∈R則“a>b”是“ac2>bc2”成立的充分不必要條件;
②若橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的兩個焦點為F1,F(xiàn)2,且弦AB過點F1,則△ABF2的周長為20.
③若命題“¬p”與命題“p或q”都是真命題,則命題q一定是真命題;
④若命題p:?x∈R,x2+x+1<0,則¬p:?x∈R,x2+x+1≥0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.給出如下命題,其中所有正確命題的序號是( 。
①將八進制數(shù)326(8)化為五進制數(shù)為1324(5);
②用秦九韶算法求多項式f(x)=7x7+4x4+3x3+2x2+x,當x=3時的值.記v0=7,則v2=63;
③簡單隨機抽樣、系統(tǒng)抽樣、分層抽樣三者的共同特點是抽樣過程中每個個體被抽到的機會均等;
④某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A種型號產(chǎn)品有16件.那么此樣本的容量n=72;
⑤某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣方法抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機編號,則抽取的42人中,編號落入?yún)^(qū)間[481,720]的人數(shù)為12.
A.①③⑤B.③④⑤C.①②③④D.①②③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某同學用“五點法”畫函數(shù)$f(x)=2sin(\frac{1}{3}x-\frac{π}{6})$的圖象,先列表,并填寫了一些數(shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{2}$
$\frac{7π}{2}$
$\frac{13π}{2}$
f(x)020-20
(1)請將表格填寫完整,并畫出函數(shù)f(x)在一個周期內(nèi)的簡圖;

(2)寫出如何由f(x)=sinx的圖象變化得到$f(x)=2sin(\frac{1}{3}x-\frac{π}{6})$的圖象,要求用箭頭的形式寫出變化的三個步驟.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列各函數(shù)的導數(shù):①$(\sqrt{x})'=\frac{1}{2}{x^{-\frac{1}{2}}}$;②(ax)′=a2lnx;③(sin2x)′=cos2x;④($\frac{1}{x+1}$)′=$\frac{1}{x+1}$.其中正確的有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_3}x\\{x^2}\\{3^x}\end{array}\right.$$\begin{array}{l}x>1\\-1<x≤1\\ x≤-1\end{array}$,則$f({-f({\sqrt{3}})})+f({f(0)})+f({\frac{1}{{f({-1})}}})$=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)的導函數(shù)為f′(x),且滿足f(x)=3x2+2xf′(2),則f′(5)=6.

查看答案和解析>>

同步練習冊答案