【題目】如圖,在中,平面平面,.設(shè)分別為中點.

(1)求證:平面

(2)求證:平面;

(3)試問在線段上是否存在點,使得過三點的平面內(nèi)的任一條直線都與平面平行?

若存在,指出點的位置并證明;若不存在,請說明理由.

【答案】(1)證明見解析;(2)證明見解析;(3)存在,點是線段中點.

【解析】

試題分析:(1)通過證明證明;(2)通過和面內(nèi)的兩條相交直線垂直,證明;(3)通過證明兩個平面內(nèi)的兩條相交直線 分別平行,證明.

試題解析證明:因為點中點, 的中點,

所以,

又因為,所以.………………3分

證明:因為平面平面平面,

,所以平面.

所以.

又因為,且,

所以.………………7分

解:當點是線段中點時,過點,,的平面內(nèi)的任一條直線都與平面平行.………………8分

中點,連,連.

可知.

因為點中點,點的中點,

所以,

又因為,,

所以.………………10分

又因為

所以,

所以.………………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實數(shù)).

(1)當求函數(shù)的圖象在點處的切線方程;

(2)設(shè)函數(shù)(其中為常數(shù)),若函數(shù)在區(qū)間上不存在極值,且存在滿足,的取值范圍;

(3)已知,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的方程為:為常數(shù))

(Ⅰ)判斷曲線的形狀;

(Ⅱ)設(shè)直線與曲線交于不同的兩點,且,求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,兩點的坐標分別為,動點滿足:直線與直線的斜率之積為.

(1)求動點的軌跡方程;

(2)過點作兩條互相垂直的射線,與1的軌跡分別交于兩點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin-2·sin2x.

(1) 求函數(shù)f(x)的最小正周期;

(2) 求函數(shù)f(x)圖象的對稱軸方程、對稱中心的坐標;

(3) 當0≤x≤時,求函數(shù)f(x)的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線的距離之和的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,直線,動點到點的距離等于它到直線的距離.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)是否存在過的直線,使得直線被曲線截得的弦恰好被點所平分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線上的點到焦點的距離.

)求拋物線的方程;

)如圖,直線與拋物線交于兩點,點關(guān)于軸的對稱點是.求證:直線恒過一定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知動直線與橢圓相交于兩點.

①若線段中點的橫坐標為,求斜率的值;

②已知點,求證:為定值.

查看答案和解析>>

同步練習(xí)冊答案