精英家教網 > 高中數學 > 題目詳情

【題目】下列函數在(0,+∞)上單調遞增的是(
A.
B.y=(x﹣1)2
C.y=21x
D.y=lg(x+3)

【答案】D
【解析】解:A中, 在(﹣1,+∞)和(﹣∞,﹣1)上單調遞減,故在(0,+∞)上也單調遞減,排除A;
B中,y=(x﹣1)2在(﹣∞,1]上遞減,在[1,+∞)上遞增,故在(0,+∞)上不單調,排除B;
y=21x在R上單調遞減,排除C;
y=lg(x+3)在(﹣3,+∞)上遞增,故在(0,+∞)上也單調遞增,
故選D.
【考點精析】認真審題,首先需要了解函數單調性的判斷方法(單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+1.
(1)判斷函數f(x)的奇偶性;
(2)用定義法證明函數f(x)在區(qū)間(0,+∞)上是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是函數圖象上的點,是雙曲線在第四象限這一分支上的動點,過點作直線,使其與雙曲線只有一個公共點,且與軸、軸分別交于點、,另一條直線軸、軸分別交于點、

則(1)為坐標原點,三角形的面積為__________

(2)四邊形面積的最小值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2x , x∈(0,2)的值域為A,函數g(x)=log2(x﹣2a)+ (a<1)的定義域為B.
(1)求集合A,B;
(2)若BA,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數g(x)=f(x)+2x,x∈R為奇函數.
(1)判斷函數f(x)的奇偶性;
(2)若x>0時,f(x)=log3x,求函數g(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,以原點為極點, 軸正半軸為極軸建立坐標系,直線的極坐標方程為,曲線的參數方程為,( 為參數).

(Ⅰ)求直線的直角坐標方程和曲線的普通方程;

(Ⅱ)曲線軸于兩點,且點, 為直線上的動點,求周長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,且
(1)求m的值;
(2)判斷f(x)在(0,+∞)上的單調性,并給予證明;
(3)求函數f(x)在區(qū)間[﹣5,﹣1]上的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各組函數中表示同一函數的是(
A. ,
B. ,g(x)=x+1
C.f(x)=|x|,
D. ,g(x)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=ax﹣(m﹣2)ax (a>0且a≠1)是定義域為R的奇函數.
(1)求m的值;
(2)若f(1)<0,試判斷y=f(x)的單調性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范圍;
(3)若f(1)= ,g(x)=a2x+a2x﹣2f(x),求g(x)在[1,+∞)上的最小值.

查看答案和解析>>

同步練習冊答案