【題目】下列函數在(0,+∞)上單調遞增的是( )
A.
B.y=(x﹣1)2
C.y=21﹣x
D.y=lg(x+3)
科目:高中數學 來源: 題型:
【題目】已知是函數圖象上的點,是雙曲線在第四象限這一分支上的動點,過點作直線,使其與雙曲線只有一個公共點,且與軸、軸分別交于點、,另一條直線與軸、軸分別交于點、.
則(1)為坐標原點,三角形的面積為__________.
(2)四邊形面積的最小值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x , x∈(0,2)的值域為A,函數g(x)=log2(x﹣2a)+ (a<1)的定義域為B.
(1)求集合A,B;
(2)若BA,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數g(x)=f(x)+2x,x∈R為奇函數.
(1)判斷函數f(x)的奇偶性;
(2)若x>0時,f(x)=log3x,求函數g(x)的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以原點為極點, 軸正半軸為極軸建立坐標系,直線的極坐標方程為,曲線的參數方程為,( 為參數).
(Ⅰ)求直線的直角坐標方程和曲線的普通方程;
(Ⅱ)曲線交軸于兩點,且點, 為直線上的動點,求周長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,且 .
(1)求m的值;
(2)判斷f(x)在(0,+∞)上的單調性,并給予證明;
(3)求函數f(x)在區(qū)間[﹣5,﹣1]上的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax﹣(m﹣2)a﹣x (a>0且a≠1)是定義域為R的奇函數.
(1)求m的值;
(2)若f(1)<0,試判斷y=f(x)的單調性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范圍;
(3)若f(1)= ,g(x)=a2x+a﹣2x﹣2f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com