“中國式過馬路”存在很大的交通安全隱患.某調(diào)
查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路
人進行了問卷調(diào)查,得到了如下列聯(lián)表:

 
男性
女性
合計
反感
10
 
 
不反感
 
8
 
合計
 
 
30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是.
(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.

(Ⅰ)

 
男性
女性
合計
反感
10
6
16
不反感
6
8
14
合計
16
14
30
沒有充足的理由認為反感“中國式過馬路”與性別有關.
(Ⅱ)

0
1
2




的數(shù)學期望為:

解析試題分析:(Ⅰ)

 
男性
女性
合計
反感
10
6
16
不反感
6
8
14
合計
16
14
30
3分
由已知數(shù)據(jù)得:,
所以,沒有充足的理由認為反感“中國式過馬路”與性別有關.   6分
(Ⅱ)的可能取值為
 
                                 9分
所以的分布列為:

0
1
2




的數(shù)學期望為:       12分
考點:列聯(lián)表;獨立檢驗;隨機事件的概率;分布列;數(shù)學期望。
點評:分布列的求解應注意以下幾點:(1)弄清隨機變量每個取值對應的隨機事件;(2)計算必須準確無誤;(3)注意用分布列的兩條性質(zhì)檢驗所求的分布列是否正確。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某單位實行休年假制度三年來,名職工休年假的次數(shù)進行的調(diào)查統(tǒng)計結果如下表所示:

休假次數(shù)




人數(shù)




根據(jù)上表信息解答以下問題:
⑴從該單位任選兩名職工,用表示這兩人休年假次數(shù)之和,記“函數(shù),在區(qū)間上有且只有一個零點”為事件,求事件發(fā)生的概率;
⑵從該單位任選兩名職工,用表示這兩人休年假次數(shù)之差的絕對值,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中國航母“遼寧艦”是中國第一艘航母,“遼寧”號以4臺蒸汽輪機為動力,為保證航母的動力安全性,科學家對蒸汽輪機進行了170余項技術改進,增加了某項新技術,該項新技術要進入試用階段前必須對其中的三項不同指標甲、乙、丙進行通過量化檢測.假如該項新技術的指標甲、乙、丙獨立通過檢測合格的概率分別為、.指標甲、乙、丙合格分別記為4分、2分、4分;若某項指標不合格,則該項指標記0分,各項指標檢測結果互不影響.
(I)求該項技術量化得分不低于8分的概率;
(II)記該項新技術的三個指標中被檢測合格的指標個數(shù)為隨機變量X,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某醫(yī)院將一專家門診已診的1000例病人的病情及診斷所用時間(單位:分鐘)進行了統(tǒng)計,如下表.若視頻率為概率,請用有關知識解決下列問題.

病癥及代號
普通病癥
復診病癥
常見病癥
疑難病癥
特殊病癥
人數(shù)
100
300
200
300
100
每人就診時間(單位:分鐘)
3
4
5
6
7
表示某病人診斷所需時間,求的數(shù)學期望.
并以此估計專家一上午(按3小時計算)可診斷多少病人;
某病人按序號排在第三號就診,設他等待的時間為,求;
求專家診斷完三個病人恰好用了一刻鐘的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某食品加工廠甲,乙兩個車間包裝小食品,在自動包裝傳送帶上每隔30分鐘抽取一袋食品,稱其重量并將數(shù)據(jù)記錄如下:
甲:102  100  98  97  103  101  99
乙: 102  101  99  98  103  98   99
(1)食品廠采用的是什么抽樣方法(不必說明理由)?
(2)根據(jù)數(shù)據(jù)估計這兩個車間所包裝產(chǎn)品每袋的平均質(zhì)量;
(3)分析哪個車間的技術水平更好些?
附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如下表(單位:輛):

 
轎車A
轎車B
轎車C
舒適型
100
150
z
標準型
300
450
600
按類型分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛. (1)求z的值
(2)用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本.從這5輛車中任取2輛,求至少有1輛舒適型轎車的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某班有6名班干部,其中男生4人,女生2人,任選選3人參加學校的義務勞動。
(1)求男生甲或女生乙被選中的概率
(2)設“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(A)和P(B︱A)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為豐富高三學生的課余生活,提升班級的凝聚力,某校高三年級6個班(含甲、乙)舉行唱歌比賽.比賽通過隨機抽簽方式?jīng)Q定出場順序.
求:(1)甲、乙兩班恰好在前兩位出場的概率;
(2)比賽中甲、乙兩班之間的班級數(shù)記為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設甲、乙、丙三人進行圍棋比賽,每局兩人參加,沒有平局。在一局比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為。比賽順序為:首先由甲和乙進行第一局的比賽,再由獲勝者與未參加比賽的選手進行第二局的比賽,依此類推,在比賽中,有選手獲勝滿兩局就取得比賽的勝利,比賽結束。
(1)求只進行了三局比賽,比賽就結束的概率;
(2)記從比賽開始到比賽結束所需比賽的局數(shù)為,求的概率分布列和數(shù)學期望

查看答案和解析>>

同步練習冊答案