分析 (Ⅰ)取OG的中點(diǎn)的H,連結(jié)HN,HB,證明$HN=\frac{1}{2}OE$,推出四邊形MNHB為平行四邊形,得到MN∥BH,證明OE⊥平面OBC,然后推出OE⊥MN.
(Ⅱ)說(shuō)明點(diǎn)M到平面OEG的距離為點(diǎn)B到平面OEG的距離,在三角形OBC中,推出∠OBG=30°,在△OBC中,求出BG=2,求出OG,然后求解點(diǎn)B到平面OEG的距離.
解答 (本小題滿分12分)
證明:(Ⅰ)如圖6,取OG的中點(diǎn)的H,連結(jié)HN,HB,…(1分)
由N為EG中點(diǎn),得△GOE中位線HN∥OE,且$HN=\frac{1}{2}OE$,
又BM∥OE,M為且AB中點(diǎn),故$BM=\frac{1}{2}AB=\frac{1}{2}OE$,
∴HN∥BM,且HN=BM∴四邊形MNHB為平行四邊形,
∴MN∥BH.…(2分)
在正方形ABCD中,E、O分別為 AD、BC的中點(diǎn)
∴$\left\{\begin{array}{l}OE⊥OB\\ OE⊥OC\\ OB∩OC=O\end{array}\right.$得OE⊥平面OBC,…(3分)
又BH?平面OBC,∴OE⊥BH,∴OE⊥MN.…(5分)
(Ⅱ)解:∵在邊長(zhǎng)為$2\sqrt{3}$的正方形ABCD中,E、O分別為 AD、BC的中點(diǎn)
∴AB∥OE,又OE?平面OEG,AB?平面OEG,∴AB∥平面OEG,…(6分)
∴點(diǎn)M到平面OEG的距離為點(diǎn)B到平面OEG的距離.…(7分)
在三角形OBC中,OB=OC=$\sqrt{3}$,∠BOC=120°,∴∠OBG=30°,
在△OBC中,由余弦定理得BC=3,又BG=2GC,∴BG=2,
同法由余弦定理得OG=1,…(9分)
∴OB2+OG2=BG2,即OB⊥OG.
由(Ⅰ)知OE⊥平面OBC,又OB?平面OBC,∴OE⊥OB,
又OE∩OG=O,∴BO⊥平面OEG,…(11分)
∴點(diǎn)B到平面OEG的距離為BO=$\sqrt{3}$.
即點(diǎn)M到平面OEG的距離為$\sqrt{3}$.…(12分)
點(diǎn)評(píng) 本題列出直線與平面垂直的性質(zhì)定理的應(yīng)用,點(diǎn)到平面的距離的求法,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (2,+∞) | C. | $(1,\;\sqrt{2})$ | D. | $(\sqrt{2},\;+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 120 | B. | 40 | C. | 30 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -81 | B. | 81 | C. | -64 | D. | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com