分析 (1)當a=1時,f(x)=lg$\frac{x-1}{x+4}$,利用導數法即可得出結論;
(2)假設存在,利用奇函數的定義,即可得出結論.
解答 解:(1)當a=1時,f(x)=lg$\frac{x-1}{x+4}$,
令y=$\frac{x-1}{x+4}$,則y′=$\frac{5}{(x+4)^{2}}$>0,即函數y=$\frac{x-1}{x+4}$,在(1,+∞)上單調遞增,
∴函數y=f(x)在(1,+∞)上單調遞增;
(2)f(-x)=lg$\frac{-x+1-2a}{-x+1+3a}$,f(-x)+f(x)=0,
可得(x-1+2a)(x+1-2a)=(x-1-3a)(x+1+3a),
∴a=-2,函數是奇函數.
點評 本題考查函數的奇偶性,考查增函數的判斷,考查導數法,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com