(本題滿分12分)
如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)為,且離心率等于,過點(diǎn)的直線與橢圓相交于不同兩點(diǎn),點(diǎn)在線段上。

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),若直線軸不重合,
試求的取值范圍。
.解(1)設(shè)橢圓的標(biāo)準(zhǔn)方程是。
由于橢圓的一個(gè)頂點(diǎn)是,故,根據(jù)離心率是得,,解得。
所以橢圓的標(biāo)準(zhǔn)方程是。 ........... (4分)
(2)設(shè)。
設(shè)直線的方程為,與橢圓方程聯(lián)立消去
,根據(jù)韋達(dá)定理得,8分
,得,整理得
把上面的等式代入得,又點(diǎn)在直線上,所以,
于是有.....(10分)
,由,得,
.綜上所述。。,....(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B、C是直線l上的不同三點(diǎn),O是l外一點(diǎn),向量
OA
OB
,
OC
滿足
OA
=(
3
2
x2+1)
OB
-(lnx-y)
OC
,記y=f(x);
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)求一條漸近線方程是,且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程,并求此雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知為橢圓的兩個(gè)焦點(diǎn),過的直線交橢圓于A、B兩點(diǎn)若,則=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)是以為焦點(diǎn)的橢圓上一點(diǎn),且則該橢圓的離心率等于_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若圓截直線得弦長(zhǎng)為,則a的值為(  )
A.-2或2B.C.2或0D.-2或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在用二分法解方程時(shí),若初始區(qū)間為,則下一個(gè)有解的區(qū)間是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

到兩坐標(biāo)軸的距離之和等于2的點(diǎn)的軌跡方程是                        (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面內(nèi)兩定點(diǎn),動(dòng)點(diǎn)滿足條件:,設(shè)點(diǎn)的軌跡是曲線為坐標(biāo)原點(diǎn)。
(I)求曲線的方程;
(II)若直線與曲線相交于兩不同點(diǎn),求的取值范圍;
(III)(文科做)設(shè)兩點(diǎn)分別在直線上,若,記 分別為兩點(diǎn)的橫坐標(biāo),求的最小值。
(理科做)設(shè)兩點(diǎn)分別在直線上,若,求面積的最大值。

查看答案和解析>>

同步練習(xí)冊(cè)答案