【題目】(1)問題發(fā)現(xiàn)

如下圖,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE。

填空:∠AEB的度數(shù)為____________;

線段AD、BE之間的數(shù)量關(guān)系是_________。

(2)拓展探究

如下圖,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=900, 點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE。請判斷∠AEB的度數(shù)及線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由。

(3)解決問題

如下圖,在正方形ABCD中,CD=。若點(diǎn)P滿足PD=1,且∠BPD=900,請直接寫出點(diǎn)A到BP的距離。

【答案】(1)① 60; ② AD=BE(2)見解析;(3).

【解析】

(2)∠AEB=900;AE=2CM+BE.

理由:∵△ACB和△DCE均為等腰直角三角形,∠ACB =∠DCE= 900,

∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DCE-∠DCB,

即∠ACD= ∠BCE,∴△ACD≌△BCE,∴AD = BE, ∠BEC=∠ADC=1350.

∴∠AEB=∠BEC-∠CED=1350-450=900

在等腰直角三角形DCE中,CM為斜邊DE上的高,

∴CM= DM= ME,∴DE=2CM,∴AE=DE+AD=2CM+BE.

.

(1)因?yàn)?/span>,所以,

,

,CD=CE,

所以全等

所以AD=BE, ,所以.

(2)(2)∠AEB=900;AE=2CM+BE.

理由:∵△ACB和△DCE均為等腰直角三角形,∠ACB =∠DCE= 900,

∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DCE-∠DCB,

即∠ACD= ∠BCE,∴△ACD≌△BCE,∴AD = BE, ∠BEC=∠ADC=1350.

∴∠AEB=∠BEC-∠CED=1350-450=900

在等腰直角三角形DCE中,CM為斜邊DE上的高,

∴CM= DM= ME,∴DE=2CM,∴AE=DE+AD=2CM+BE.

.

(3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,AB=1,BC=,AA1=2E是側(cè)棱BB1的中點(diǎn).

(1)求證:A1E⊥平面AED;

(2)求二面角A﹣A1D﹣E的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x|x+a|﹣ lnx.
(1)當(dāng)a=0時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)若a<0,討論函數(shù)f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD中,PD⊥底面ABCD,AD∥BC,AC⊥DB,∠CAD=60°,AD=2,PD=1.

(1)證明:AC⊥BP;
(2)求二面角C﹣AP﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線關(guān)于軸對稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)在拋物線上.

(1)寫出該拋物線的標(biāo)準(zhǔn)方程及其準(zhǔn)線方程;

(2)過點(diǎn)作兩條傾斜角互補(bǔ)的直線與拋物線分別交于不同的兩點(diǎn),求證:直線的斜率是一個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三年級期中考試的學(xué)生中隨機(jī)統(tǒng)計(jì)了40名學(xué)生的政治成績,40名學(xué)生的成績?nèi)吭?/span>40分至100分之間,據(jù)此繪制了如圖所示的樣本頻率分布直方圖.

(1)求成績在[80,90的學(xué)生人數(shù);

(2)從成績大于等于80分的學(xué)生中隨機(jī)選2名學(xué)生,求至少有1 名學(xué)生成績在[90,100]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

①對立事件一定是互斥事件;②若A,B為兩個(gè)隨機(jī)事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對立事件.

其中正確命題的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:

①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選用的模型比較合適;

②用相關(guān)指數(shù)R2來刻畫回歸的效果,R2值越大,說明模型的擬合效果越好;

③比較兩個(gè)模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的模型,擬合效果越好.

④在研究氣溫和熱茶銷售杯數(shù)的關(guān)系時(shí),若求得相關(guān)指數(shù)R2≈0.85,則表明氣溫解釋了15%的熱茶銷售杯數(shù)變化.

其中正確命題的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(﹣x)=f(x),f(x+8)=f(x),且當(dāng)x∈(0,4]時(shí)f(x)= ,關(guān)于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍是(
A.(﹣ ln6,ln2]
B.(﹣ln2,﹣ ln6)
C.(﹣ln2,﹣ ln6]
D.(﹣ ln6,ln2)

查看答案和解析>>

同步練習(xí)冊答案