【題目】已知點,橢圓的長軸長是短軸長的2倍,是橢圓的右焦點,直線的斜率為,為坐標(biāo)原點.
(1)求橢圓的方程;
(2)設(shè)過點的動直線與橢圓相交于兩點.當(dāng)的面積最大時,求直線的方程.
【答案】(1) .(2) 或.
【解析】試題分析:(1)由條件知a=2b,,又,可得a,b,故得到E的方程;
(2)設(shè)出直線l的方程和點P的坐標(biāo),聯(lián)立直線l與橢圓方程,當(dāng)判別式大于0時,根據(jù)韋達(dá)定理得根與系數(shù)的關(guān)系得到的長。根據(jù)點到直線距離公式代入面積中,得到其關(guān)于k的表達(dá)式,根據(jù)換元法和基本不等式即可得到當(dāng)面積取得最大值時k的值,即求得l的方程.
試題解析:(1) 設(shè)F(c,0),由條件知a=2b,得,又,
所以a=2, ,故的方程.
(2)依題意當(dāng)軸不合題意,故設(shè)直線l:y=kx-2,設(shè)
將y=kx-2代入,得,
當(dāng),即時,,
從而,
又點O到直線PQ的距離,所以OPQ的面積
,
設(shè),則t>0,,
當(dāng)且僅當(dāng),等號成立,且滿足,
所以當(dāng)OPQ的面積最大時,
的方程為: 或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中, 、分別是棱、的中點,點在棱上,已知, , .
(1)求證: 平面;
(2)設(shè)點在棱上,當(dāng)為何值時,平面平面?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)平面上點與兩個定點, 的距離之比等于5.
(1)求點的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點的直線被所截得的線段的長為8,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)若對,f(x) 恒成立,求的取值范圍;
(2)已知常數(shù)aR,解關(guān)于x的不等式f(x) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點,如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,離心率,且橢圓經(jīng)過點,過橢圓的左焦點且不與坐標(biāo)軸垂直的直線交橢圓于, 兩點.
(1)求橢圓的方程;
(2)設(shè)線段的垂直平分線與軸交于點,求△的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABC是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE=2,點M是棱AD的中點
(I)證明:平面AED⊥平面ACD;
(Ⅱ)求銳二面角B-CM-A的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機(jī)抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得=80, =20, =184, =720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
附:線性回歸方程y=bx+a中, ,a=-b,其中, 為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項等比數(shù)列{an}(n∈N*),首項a1=3,前n項和為Sn,且S3+a3、S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{nan}的前n項和為Tn,若對任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com