6.設(shè)a是實數(shù),f(x)=a-$\frac{2}{{2}^{x}+1}$(x∈R).
(1)證明:f(x)是增函數(shù);
(2)是否存在實數(shù)a,使函數(shù)f(x)為奇函數(shù)?

分析 (1)運用單調(diào)性的定義,設(shè)值、作差、變形和定符號、下結(jié)論等;
(2)運用定義法,若f(x)為奇函數(shù),可得f(-x)+f(x)=0,化簡整理,解方程即可得到a的值.

解答 解:(1)證明:設(shè)m<n,
則f(m)-f(n)=a-$\frac{2}{{2}^{m}+1}$-(a-$\frac{2}{{2}^{n}+1}$)
=$\frac{2({2}^{m}-{2}^{n})}{({2}^{m}+1)({2}^{n}+1)}$,
由m<n,可得2m<2n,則(2m+1)(2n+1)>0,2m-2n<0.
即有f(m)-f(n)<0,即f(m)<f(n),
則f(x)在R上為增函數(shù);
(2)存在實數(shù)a=1,使函數(shù)f(x)為奇函數(shù).
若f(x)為奇函數(shù),可得f(-x)+f(x)=0,
即有a-$\frac{2}{{2}^{-x}+1}$+a-$\frac{2}{{2}^{x}+1}$=2a-($\frac{2•{2}^{x}}{1+{2}^{x}}$+$\frac{2}{{2}^{x}+1}$)
=2a-2=0,
解得a=1.

點評 本題考查函數(shù)的單調(diào)性的判斷,注意運用定義法,考查存在性問題的解法,注意運用假設(shè)法,以及奇函數(shù)的定義,考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,點P是正方體ABCD-A1B1C1D1的面對角線BC1(線段BC1)上運動,給出下列五個命題:
①三棱錐A-D1PC的體積不變;
②直線AP與平面ACD1所成角的大小不變;
③二面角P-AD1-C的大小不變;
④直線AD與直線B1P為異面直線;
⑤點M是平面A1B1C1D1上到點D和C1距離相等的點,則點M一定在直線A1D1上.
其中真命題的編號為①③④⑤.(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知點P是圓心為F1的圓(x+1)2+y2=12上任意一點,點F2(1,0),若線段PF2的垂直平分線與半徑PF1相交于點M.
(1)求動點M的軌跡方程;
(2)過點F2的直線l(l不與x軸重合)與M的軌跡交于不同的兩點A,B,求△F1AB的內(nèi)切圓半徑r的最大值,并求出此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線l1:x+2y-3=0與直線l2:2x-ay+3=0平行,則a=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)在(0,$\frac{4π}{3}$]上單調(diào)遞增,在($\frac{4π}{3}$,2π]上單調(diào)遞減,當(dāng)x∈[π,2π]時,不等式m-3≤f(x)≤m+3恒成立,則實數(shù)m的取值范圍為(  )
A.[$\frac{1}{2}$,1]B.(-∞,-2)C.[-$\frac{5}{2}$,4]D.[-2,$\frac{7}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓C:x2+y2+6y-a=0的圓心到直線x-y-1=0的距離等于圓C半徑的$\frac{1}{2}$,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知拋物線C1:y=ax2(a>0)的焦點F也是橢圓C2:$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{^{2}}$=1(b>0)的一個焦點,點M,P($\frac{3}{2}$,1)分別為曲線C1,C2上的點,則|MP|+|MF|的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,A,B,C是直線l上的三點,AB=4,BC=4,過A作動圓與直線l相切,過B,C分別做圓的異于l的兩切線,交于點P,則P的軌跡為橢圓.(填軌跡類型,不求方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知雙曲線的焦點在y軸,實軸長與虛軸長之比為2:3,且經(jīng)過P($\sqrt{6}$,2),求雙曲線方程.
(2)已知焦點在x軸上,離心率為$\frac{5}{3}$,且經(jīng)過點M(-3,2$\sqrt{3}$)的雙曲線方程.

查看答案和解析>>

同步練習(xí)冊答案