3.若x,y滿足$\left\{\begin{array}{l}x+2y-4=0\\ x-2y≤0\\ x≥1\end{array}\right.$則$\frac{y}{x}$的最大值是$\frac{3}{2}$.

分析 根據(jù)已知的約束條件畫出滿足約束條件的可行域,再用角點法,求出目標函數(shù)的最大值.

解答 解:滿足約束條件的可行域如下圖中陰影部分所示:
則$\frac{y}{x}$的幾何意義表示平面區(qū)域內(nèi)的點
與點(0,0)的斜率的最大值,由$\left\{\begin{array}{l}{x=1}\\{x+2y-4=0}\end{array}\right.$
解得A(1,$\frac{3}{2}$)
顯然過A時,斜率最大,最大值是$\frac{3}{2}$,
故答案為:$\frac{3}{2}$.

點評 用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數(shù).然后將可行域各角點的值一一代入,最后比較,即可得到目標函數(shù)的最優(yōu)解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知數(shù)列{an}為等比數(shù)列,且${a_{2015}}+{a_{2017}}=\int_0^2{\sqrt{4-{x^2}}}dx$,則a2016(a2014+a2018)的最小值為$\frac{{π}^{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合A={x|x2-2x-3<0},$B=\{\;x|\frac{1}{x}<1\;\}$,則A∩B=( 。
A.{x|1<x<3}B.{x|-1<x<3}C.{x|-1<x<0或0<x<3}D.{x|-1<x<0或1<x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知點$P(\sqrt{3},1)$,Q(cosx,sinx),O為坐標原點,函數(shù)$f(x)=\overrightarrow{OP}•\overrightarrow{QP}$.
(1)求函數(shù)f(x)的解析式及最小正周期;
(2)若A為△ABC的內(nèi)角,f(A)=4,BC=3,△ABC的面積為$\frac{{3\sqrt{3}}}{4}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某三棱錐的三視圖如圖所示,則該三棱錐中最長棱的長度為( 。
A.$\sqrt{5}$B.$\sqrt{6}$C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,E,F(xiàn)分別是PB,PD的中點.
(Ⅰ)求證:PB∥平面FAC;
(Ⅱ)求三棱錐P-EAD的體積;
(Ⅲ)求證:平面EAD⊥平面FAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(sinx,$\sqrt{3}$sinx),x∈R,函數(shù)f(x)=$\overrightarrow{a}$•($\overrightarrow{a}$+2$\overrightarrow$).
(1)求函數(shù)f(x)的最大值與單調(diào)遞增區(qū)間;
(2)求使不等式f(x)≥2成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.數(shù)列{an}的前n項和為Sn,已知${a_1}=\frac{1}{2},{S_n}={n^2}{a_n}-n({n-1}),n=1,2,…$
(1)寫出Sn與Sn-1的遞推關(guān)系式(n≥2),并求出S2,S3的值;
(2)求Sn關(guān)于n的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.新學年伊始,附中社團開始招新.某高一新生對“大觀天文社”、“理科學社”、“水墨霓裳社”很感興趣.假設(shè)他能被這三個社團接受的概率分別為$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{3}$.
(1)求此新生被兩個社團接受的概率;
(2)設(shè)此新生最終參加的社團數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案