10.已知$\frac{1}{{{{log}_2}a}}+\frac{1}{{{{log}_4}a}}=3$,則a=2.

分析 根據(jù)對數(shù)的運算性質(zhì)化簡即可.

解答 解:$\frac{1}{{{{log}_2}a}}+\frac{1}{{{{log}_4}a}}=3$,
∴l(xiāng)oga2+loga4=3,
∴3loga2=3,
∴l(xiāng)oga2=1
∴a=2,
故答案為:2

點評 本題考查了對數(shù)的運算性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.數(shù)列{an}的通項公式為an=nsin$\frac{nπ}{2}$+(-1)n,其前n項和為Sn,則S2017=-3026.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.王明參加某衛(wèi)視的闖關(guān)活動,該活動共3關(guān).設(shè)他通過第一關(guān)的概率為0.8,通過第二、第三關(guān)的概率分別為p,q,其中p>q,并且是否通過不同關(guān)卡相互獨立.記ξ為他通過的關(guān)卡數(shù),其分布列為:
ξ0123
P0.048ab0.192
(Ⅰ)求王明至少通過1個關(guān)卡的概率;
(Ⅱ)求p,q的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.復數(shù)z滿足zi=3+4i,若復數(shù)$\overline{z}$對應的點為M,則點M到直線3x-y+1=0的距離為(  )
A.$\frac{4\sqrt{10}}{5}$B.$\frac{7\sqrt{10}}{5}$C.$\frac{8\sqrt{10}}{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知由甲、乙兩位男生和丙、丁兩位女生組成的四人沖關(guān)小組,參加由安徽衛(wèi)視推出的大型戶外競技類活動《男生女生向前沖》.活動共有四關(guān),若四關(guān)都闖過,則闖關(guān)成功,否則落水失敗.設(shè)男生闖過一至四關(guān)的概率依次是$\frac{5}{6}$,$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,女生闖過一至四關(guān)的概率依次是$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$.
(Ⅰ)求男生甲闖關(guān)失敗的概率;
(Ⅱ)設(shè)X表示四人沖關(guān)小組闖關(guān)成功的人數(shù),求隨機變量X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ex+(a+1)x(其中e為自然對數(shù)的底數(shù))
(1)設(shè)過點(0,0)的直線l與曲線f(x)相切于點(x0,f(x0)),求x0的值;
(2)函數(shù)g(x)=f(x)-(ax2+ex+1)的導函數(shù)為g′(x),若g′(x)在(0,1)上恰有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在菱形ABCD中,AB=2,∠A=60°,M為BC中點,則$\overrightarrow{AM}$•$\overrightarrow{BD}$=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.春節(jié)來臨,有農(nóng)民工兄弟A、B、C、D四人各自通過互聯(lián)網(wǎng)訂購回家過年的火車票,若訂票成功即可獲得火車票,即他們獲得火車票與否互不影響.若A、B、C、D獲得火車票的概率分別是${p_1},\frac{1}{2},{p_3},\frac{1}{4}$,其中p1>p3,又${p_1},\frac{1}{2},2{p_3}$成等比數(shù)列,且A、C兩人恰好有一人獲得火車票的概率是$\frac{1}{2}$.
(1)求p1,p3的值;
(2)若C、D是一家人且兩人都獲得火車票才一起回家,否則兩人都不回家.設(shè)X表示A、B、C、D能夠回家過年的人數(shù),求X的分布列和期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在底面為直角梯形的四棱錐P-ABCD中,E為PC的中點,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=2,AD=2,AB=2$\sqrt{3}$,BC=4.
(1)求證:DE∥平面PAB;
(2)求直線AE與平面PCD所成角的正弦值.

查看答案和解析>>

同步練習冊答案