14.已知等差數(shù)列{an}的a6+a7+a8=9,則前13項的和為39.

分析 由等差數(shù)列通項公式求出a7=3,由此能求出前13項的和.

解答 解:∵等差數(shù)列{an}中,a6+a7+a8=9,
∴a6+a7+a8=3a7=9,解得a7=3,
∴前13項的和為:
S13=$\frac{13}{2}$(a1+a13)=13×a7=39.
故答案為:39.

點評 本題考查等差數(shù)列的前13項和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知x<0,則$y=3x+\frac{4}{x}$有( 。
A.最大值$-4\sqrt{3}$B.最小值$-4\sqrt{3}$C.最大值$4\sqrt{3}$D.最小值$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=ax3+f′(2)x2+3,若f′(1)=-5,則f′(2)=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列說法中,正確的是(  )
A.小于$\frac{π}{2}$的角是銳角
B.第一象限的角不可能是負(fù)角
C.終邊相同的兩個角的差是360°的整數(shù)倍
D.若α是第一象限角,則2α是第二象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在一次期末數(shù)學(xué)測試中,唐老師任教班級學(xué)生的考試得分情況如表所示:
分?jǐn)?shù)區(qū)間[50,70][70,90][90,110][110,130][130,150]
人數(shù)28323820
(1)根據(jù)上述表格,試估計唐老師所任教班級的學(xué)生在本次期末數(shù)學(xué)測試的平均成績;
(2)若學(xué)生的成績大于或等于130分為優(yōu)秀,小于130分且大于等于90分為合格,小于90分為不及格,若是優(yōu)秀,學(xué)生在期末綜合測評中可得到40分,若是合格,學(xué)生在期末綜合測評中可得到20分,若是不合格,學(xué)生在期末綜合測評中則扣20分,以頻率估計概率,若從大量的學(xué)生中隨機(jī)抽取2人,這2人在數(shù)學(xué)科目的期末綜合測評分?jǐn)?shù)之和記為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知n=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}(6cosx-sinx)dx$,則二項式${(x+\frac{2}{\sqrt{x}})}^{n}$展開式中常數(shù)項是( 。
A.第7項B.第8項C.第9項D.第10項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=1-2alnx,g(x)=x2
(1)討論h(x)=f(x)+g(x)的單調(diào)性;
(2)令F(x)=$\frac{f(x)}{g(x)}$(a>0)對任意x1,x2∈(0,$\frac{1}{e}$]且x1≠x2,|$\frac{F({x}_{1})-F({x}_{2})}{{{x}_{1}}^{2}-{{x}_{2}}^{2}}$|>$\frac{4}{{{x}_{1}}^{2}{{x}_{2}}^{2}}$恒成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=2sin x,對任意的x∈R都有f(x1)≤f(x)≤f(x2),則|x1-x2|的最小值為( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=6+4x-x4在[-1,2]上的最大值和最小值分別為( 。
A.f(1)和f(2)B.f(1)和f(-1)C.f(-1)和f(2)D.f(2)和f(-1)

查看答案和解析>>

同步練習(xí)冊答案