已知集合A={x|-1≤x≤3},集合B={x|
1
x
<0},則A∪B=( 。
A、{x|-1<x<0}
B、{x|-1≤x<0}
C、{x|x<0}
D、{x|x≤3}
考點(diǎn):并集及其運(yùn)算
專(zhuān)題:集合
分析:利用并集的性質(zhì)求解.
解答: 解:∵集合A={x|-1≤x≤3},集合B={x|
1
x
<0}={x|x<0},
∴A∪B={x|x≤3}.
故選:D.
點(diǎn)評(píng):本題考查并集的求法,解題時(shí)要認(rèn)真審題,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xex在點(diǎn)(1,f(1))處的切線(xiàn)的斜率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an-1(a是不為0的常數(shù)),那么數(shù)列{an}(  )
A、一定是等差數(shù)列
B、一定是等比數(shù)列
C、或者是等差數(shù)列或者是等比數(shù)列
D、既不是等差數(shù)列也不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x2+x,x<0
-x2,x≥0
,則f(f(-2))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)化簡(jiǎn)
a-4b2
3ab2
(a>0,b>0)(結(jié)果寫(xiě)成分?jǐn)?shù)指數(shù)冪形式);
(2)計(jì)算log2
7
48
+log212-
1
2
log242的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin(-660°)=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱ABC-A 11C1中,AC=BC=1,∠ACB=90°,點(diǎn)D為AB的中點(diǎn).
(1)求證:BC1∥面A1DC;
(2)若AA1=
2
2
,求二面角A1-CD-B的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)三位數(shù)的百位,十位和個(gè)位上的數(shù)依次成等差數(shù)列,則稱(chēng)這樣的數(shù)為三位等差數(shù),按照上述定義,三位等差數(shù)共有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)點(diǎn)F1(-1,0)且斜率為1的直線(xiàn)l1與直線(xiàn)l2:3x+3y+5=0交于點(diǎn)P.
(Ⅰ)求以F1、F2(1,0)為焦點(diǎn)且過(guò)點(diǎn)P的橢圓C的方程.
(Ⅱ)設(shè)點(diǎn)Q是橢圓C上除長(zhǎng)軸兩端點(diǎn)外的任意一點(diǎn),試問(wèn)在x軸上是否存在兩定點(diǎn)A、B使得直線(xiàn)QA、QB的斜率之積為定值?若存在,請(qǐng)求出定值,并求出所有滿(mǎn)足條件的定點(diǎn)A、B的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案