17.圓(x-2)2+y2=4與圓x2+(y-2)2=4在公共弦所對(duì)的圓心角是( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{2}$

分析 根據(jù)圓的標(biāo)準(zhǔn)方程求得半徑以及弦心距d,再利用直角三角形中的邊角關(guān)系,求得公共弦所對(duì)的圓心角的一半的值,可得公共弦所對(duì)的圓心角.

解答 解:圓(x-2)2+y2=4的圓心為M(2,0)、半徑為r=2;
圓x2+(y-2)2=4的圓心為N(0,2)、半徑為r=2,
故圓心距MN=$\sqrt{{2}^{2}{+2}^{2}}$=2$\sqrt{2}$,弦心距d=$\frac{MN}{2}$=$\sqrt{2}$.
設(shè)公共弦所對(duì)的圓心角是2θ,則cosθ=$\fracieoqqom{r}$=$\frac{\sqrt{2}}{2}$,∴θ=$\frac{π}{4}$,∴2θ=$\frac{π}{2}$,
故選:D.

點(diǎn)評(píng) 本題主要考查圓和圓的位置關(guān)系的判定,直角三角形中的邊角關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對(duì)于不重合的直線m,l和平面α,β,要證α⊥β需具備的條件是( 。
A.m⊥l,m∥α,l∥βB.m⊥l,α∩β=m,l?αC.m∥l,m⊥α,l⊥βD.m∥l,l⊥β,m?α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的函數(shù)f(x)滿足f(x)+f(-x)=2x2,且x∈[0,+∞)時(shí)f′(x)>2x恒成立,則不等式f(8-x)+16x<64+f(x)的解集為( 。
A.(4,+∞)B.(-∞,4)C.(8,+∞)D.(-∞,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=-sin3x-2sinx的最小值是-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知0<a<2,證明:$\frac{1}{a}$+$\frac{4}{2-a}$≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.?dāng)?shù)列{an}滿足a1=2,an=$\frac{{a}_{n+1}-1}{{a}_{n+1}+1}$,其前n項(xiàng)的積為Tn,則T2016的值為(  )
A.-3B.1C.2D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知P是△ABC內(nèi)一點(diǎn),且$5\overrightarrow{AP}-2\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow 0$,則△PAB的面積與△ABC的面積之比等于( 。
A.1:3B.2:3C.1:5D.2:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.曲線$f(x)=\frac{sinx}{{\sqrt{2}sin(x+\frac{π}{4})}}-\frac{1}{2}$在點(diǎn)$M(\frac{π}{4},0)$處的切線的斜率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=log2(x2-3x+2)的定義域?yàn)椋ā 。?table class="qanwser">A.(0,1)∪(2,+∞)B.(-∞,1)∪(2,+∞)C.(0,+∞)D.(1,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案