5.函數(shù)y=-sin3x-2sinx的最小值是-3.

分析 設(shè)t=sinx(-1≤t≤1),則y=-t3-2t,∴y′=-3t2-2<0,函數(shù)單調(diào)遞減,即可得出結(jié)論.

解答 解:設(shè)t=sinx(-1≤t≤1),則y=-t3-2t,∴y′=-3t2-2<0,函數(shù)單調(diào)遞減,
∴t=1時(shí),函數(shù)y=-sin3x-2sinx的最小值是-3
故答案為-3.

點(diǎn)評(píng) 本題考查三角函數(shù)的最值,考查函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如果$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內(nèi)所有向量的一組基底,那么(  )
A.該平面內(nèi)存在一向量$\overrightarrow a$不能表示$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$,其中m,n為實(shí)數(shù)
B.若向量$m\overrightarrow{e_1}+n\overrightarrow{e_2}$與$\overrightarrow a$共線,則存在唯一實(shí)數(shù)λ使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=λ\overrightarrow a$
C.若實(shí)數(shù)m,n使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=\overrightarrow 0$,則m=n=0
D.對(duì)平面中的某一向量$\overrightarrow a$,存在兩對(duì)以上的實(shí)數(shù)m,n使得$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個(gè)頂點(diǎn)的坐標(biāo)為(0,-1),且右焦點(diǎn)F到直線x-y+1=0的距離為$\sqrt{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為2的直線l,使得當(dāng)直線l與橢圓C有兩個(gè)不同交點(diǎn)M,N時(shí),能在直線$y=\frac{5}{3}$上找到一點(diǎn)P,在橢圓C上找到一點(diǎn)Q,滿足$\overrightarrow{PM}=\overrightarrow{NQ}$?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)x,y,z均為正實(shí)數(shù),a=x+$\frac{1}{y}$,b=y+$\frac{1}{z}$,c=z+$\frac{1}{x}$,則a,b,c三個(gè)數(shù)( 。
A.至少有一個(gè)不小于2B.都小于2
C.至少有一個(gè)不大于2D.都大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的普豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn),受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)π的值,先請(qǐng)120名同學(xué)每人隨機(jī)寫(xiě)下一個(gè)都小于1的正實(shí)數(shù)對(duì)(x,y),再統(tǒng)計(jì)兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)(x,y)的個(gè)數(shù)m;最后在根據(jù)統(tǒng)計(jì)數(shù)m估計(jì)π的值,假設(shè)統(tǒng)計(jì)結(jié)果是m=34,那么可以估計(jì)π的值為(  )
A.$\frac{22}{7}$B.$\frac{47}{15}$C.$\frac{51}{16}$D.$\frac{53}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某獎(jiǎng)勵(lì)基金發(fā)放方式為:每年一次,把獎(jiǎng)金總額平均分成6份,獎(jiǎng)勵(lì)在某6個(gè)方面為人類作出最有益貢獻(xiàn)的人,每年發(fā)放獎(jiǎng)金的總金額是基金在該年度所獲利息的一半,另一半利息存入基金總額,以便保證獎(jiǎng)金數(shù)逐年增加.假設(shè)基金平均年利率為r=6.24%,2000年該獎(jiǎng)發(fā)放后基金總額約為21000萬(wàn)元.用an表示為第n(n∈N*)年該獎(jiǎng)發(fā)放后的基金總額(2000年為第一年).
(1)用a1表示a2與a3,并根據(jù)所求結(jié)果歸納出an的表達(dá)式;
(2)試根據(jù)an的表達(dá)式判斷2011年度該獎(jiǎng)各項(xiàng)獎(jiǎng)金是否超過(guò)150萬(wàn)元?并計(jì)算從2001年到2011年該獎(jiǎng)金累計(jì)發(fā)放的總額.
(參考數(shù)據(jù):1.062410=1.83,1.0329=1.32,1.031210=1.36,1.03211=1.40)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.圓(x-2)2+y2=4與圓x2+(y-2)2=4在公共弦所對(duì)的圓心角是( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.導(dǎo)數(shù)計(jì)算:
(Ⅰ)y=xlnx;
(Ⅱ)$y=\frac{sinx}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若直線l的方向向量與平面α的法向量的夾角為120°,則直線l與平面α的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案