分析 (1)設(shè){an}的公比為q,由2a1,a3,3a2成等差數(shù)列.可得2a1+3a2=2a3,即2q2-3q-2=0,解出進(jìn)而得出.
(2)由(1)知:Sn=2n+1-2,${b_n}=\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$=$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n+1}}$,再利用“裂項(xiàng)求和”方法即可得出.
解答 解:(1)設(shè){an}的公比為q,∵2a1,a3,3a2成等差數(shù)列.
∴2a1+3a2=2a3,
即2q2-3q-2=0,
解得q=2或$q=-\frac{1}{2}$,
又因?yàn)閿?shù)列各項(xiàng)為正,故q=2,
又a1=2,∴${a_n}={2^n}$.
(2)由(1)知:Sn=$\frac{2({2}^{n}-1)}{2-1}$=2n+1-2,
${b_n}=\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$=$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n+1}}$,
∴數(shù)列{bn}的前n項(xiàng)和Tn=$(\frac{1}{{S}_{1}}-\frac{1}{{S}_{2}})$+$(\frac{1}{{S}_{2}}-\frac{1}{{S}_{3}})$+…+$(\frac{1}{{S}_{n}}-\frac{1}{{S}_{n+1}})$
=$\frac{1}{{S}_{1}}-\frac{1}{{S}_{n+1}}$=$\frac{1}{2}$-$\frac{1}{{2}^{n+2}-2}$.
點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和法方法、等比數(shù)列的定義通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2$\sqrt{2}$<m<2$\sqrt{2}$ | B. | -2<m<2 | C. | m≤2$\sqrt{2}$ | D. | -2≤m≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行四邊形 | B. | 矩形 | C. | 空間四邊形 | D. | 菱形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com