6.已知正方體ABCD-A1B1C1D1中,點H是棱B1C1中點,則四邊形BDD1H是( 。
A.平行四邊形B.矩形C.空間四邊形D.菱形

分析 正方體ABCD-A1B1C1D1中,點H是棱B1C1中點,可得H不在平面BDD1內(nèi),即可得出結(jié)論.

解答 解:∵正方體ABCD-A1B1C1D1中,點H是棱B1C1中點,
∴H不在平面BDD1內(nèi),
∴四邊形BDD1H是空間四邊形,
故選C.

點評 本題考查棱柱的結(jié)構(gòu)特征,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在三棱柱ABC-A1B1C1中,D是AB的中點.
(1)求證:BC1∥平面A1CD;
(2)若AC=CD,求證A1D⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow{a}$=(x,2,2),$\overrightarrow$=(2,y,-2),$\overrightarrow{c}$=(3,1,z),$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$⊥$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$;
(2)求向量($\overrightarrow{a}$+$\overrightarrow{c}$)與($\overrightarrow$+$\overrightarrow{c}$)所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,已知AB是⊙O的直徑,C為圓上任意一點,過C的切線分別與過A,B兩點的切線交于P,Q.求證:AB2=4AP•BQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在各項為正數(shù)的等比數(shù)列{an}中,a1=2,且2a1,a3,3a2成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Sn為{an}的前n項和,${b_n}=\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,點E是PC中點,作EF⊥PB,交PB于點F.
(1)求證:PA∥平面EDB;
(2)求證:平面EFD⊥平面PBC
(3)求證:PB⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖是一個獎杯三視圖,試根據(jù)獎杯三視圖計算它的表面積與體積.(尺寸單位:cm,取$π≈3,\sqrt{34}≈6$,結(jié)果精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知tanα=$\frac{4}{3}$,求sinα及cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某次志愿活動,需要從6名同學(xué)中選出4人負(fù)責(zé)A、B、C、D四項工作(每人負(fù)責(zé)一項),若甲、乙均不能負(fù)責(zé)D項工作,則不同的選擇方案有(  )
A.240種B.144種C.96種D.300種

查看答案和解析>>

同步練習(xí)冊答案