A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
分析 $x∈({0,\frac{π}{2}})$,令f(x)=x-sinx,利用導(dǎo)數(shù)研究其單調(diào)性即可判斷出命題p的真假.而$x∈({0,\frac{π}{2}})$,令g(x)=x2-sinx,同理判斷出此命題的真假.
解答 解:$x∈({0,\frac{π}{2}})$,令f(x)=x-sinx,則f′(x)=1-cosx>0,∴函數(shù)f(x)在$x∈({0,\frac{π}{2}})$上單調(diào)遞增,則f(x)>f(0)=0,因此命題p是真命題.
而$x∈({0,\frac{π}{2}})$,令g(x)=x2-sinx,則g′(x)=2x-cosx,${g}^{′}(0){g}^{′}(\frac{π}{2})$=-1×π<0,∴g′(x)=0有解,因此函數(shù)g(x)存在極值點,設(shè)為x0,則2x0=cosx0.g(x0)=${x}_{0}^{2}$-sinx0=$\frac{co{s}^{2}{x}_{0}}{4}$-sinx0=$\frac{-si{n}^{2}{x}_{0}-4sin{x}_{0}+1}{4}$=$\frac{-(sin{x}_{0}+2)^{2}+5}{4}$∈$(-1,\frac{1}{4})$,因此命題q不一定成立.
∴p是q的必要不充分條件.
故選:B.
點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | $({-\frac{1}{3},1}]$ | C. | [1,+∞) | D. | $({-∞,\frac{1}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | $\frac{7}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com