20.求傾斜角為直線y=-x+1的傾斜角的$\frac{1}{3}$,且分別滿足下列條件的直線方程:
(1)經(jīng)過點(diǎn)(-4,1);
(2)在y軸上的截距為-10.

分析 運(yùn)用斜率和傾斜角的關(guān)系,求出所求直線的斜率,再由點(diǎn)斜式方程和斜截式方程,即可得到所求的(1),(2)的方程.

解答 解:(1)由于直線過點(diǎn)(-4,1),由直線的點(diǎn)斜式方程得y-1=x+4,即x-y+5=0.
(2)由于直線在y軸上的截距為-10,由直線的斜截式方程得y=x-10,即x-y-10=0.

點(diǎn)評 本題考查直線方程的求法,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用反證法證明命題“a,b∈N,如果ab為偶數(shù),那么a,b中至少有一個(gè)為偶數(shù)”,則正確的假設(shè)內(nèi)容是( 。
A.a,b都為偶數(shù)B.a,b不為偶數(shù)
C.a,b都不為偶數(shù)D.a,b中有一個(gè)不為偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}滿足a1=1,an=a1+$\frac{1}{2}{a_2}+\frac{1}{3}{a_3}+…+\frac{1}{n-1}{a_{n-1}}$(n≥2,n∈N*),若ak=2017,則k=2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知θ∈[0,2π),當(dāng)θ取遍全體實(shí)數(shù)時(shí),直線xcosθ+ysinθ=4+$\sqrt{2}$sin(θ+$\frac{π}{4}$)所圍成的圖形的面積是( 。
A.πB.C.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=ex,g(x)=$\left\{\begin{array}{l}{\sqrt{1-(x+2)^{2}},-3≤x≤-1}\\{2g(x-2),-1<x≤1}\end{array}\right.$,則在區(qū)間[-3,1]上的函數(shù)y=f(x)-g(x)的零點(diǎn)個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知ω>0,在函數(shù)y=sinωx與y=cosωx的圖象的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)的橫坐標(biāo)之差的絕對值為2,則ω=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.復(fù)數(shù)$z=\frac{2}{1-i}$,則z-|z|對應(yīng)的點(diǎn)位于第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{2π}{3}$$\frac{8π}{3}$
Asin(ωx+φ)030-30
(1)請將上表數(shù)據(jù)補(bǔ)充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)f(x)的解析式;
(2)令g(x)=f (x+$\frac{π}{3}$)-$\frac{1}{2}$,當(dāng)x∈[-π,π]時(shí),恒有不等式g(x)-a-3<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$x∈({0,\frac{π}{2}})$,p:sinx<x,q:sinx<x2,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案