9.若集合A={x|y=$\sqrt{4-{x}^{2}}$},集合B={y|y=$\sqrt{4-{x}^{2}}$},則A∪B={x|-2≤x≤2}.

分析 求出A中x的范圍確定出A,求出B中y的范圍確定出B,找出兩集合的并集即可.

解答 解:由y=$\sqrt{4-{x}^{2}}$,得到4-x2≥0,
解得:-2≤x≤2,即A={x|-2≤x≤2},
由0≤y=$\sqrt{4-{x}^{2}}$≤2,得到B={y|0≤y≤2},
則A∪B={x|-2≤x≤2},
故答案為:{x|-2≤x≤2}

點(diǎn)評 此題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓M(x+2)2+(y+2)2=r2(r>0)過點(diǎn)T(-3,-3),圓M關(guān)于直線x+y+2=0對稱的圓為圓C,設(shè)P點(diǎn)為T點(diǎn)關(guān)于x+y+2=0的對稱點(diǎn).
(1)求圓C方程;
(2)設(shè)Q為圓C上的一個(gè)動點(diǎn),求$\overrightarrow{PQ•}\overrightarrow{MQ}$的最小值;
(3)過點(diǎn)P作兩條相異直線分別與圓C相交于A,B,且直線PA和直線PB分別與x軸的交點(diǎn)分別為E,F(xiàn),若△PEF是以P為頂點(diǎn)的等腰三角形,O為坐標(biāo)原點(diǎn),試判斷直線OP和AB是否平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列函數(shù)的定義域,并判斷函數(shù)的奇偶性:
(1)f(x)=x2+x-2;
(2)f(x)=x+3x${\;}^{\frac{2}{3}}$;
(3)f(x)=2x+x${\;}^{\frac{1}{3}}$;
(4)f(x)=2x-4+x${\;}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=2x3-$\frac{1}{2}a$x2+ax+1在(0,+∞)有兩個(gè)極值,則實(shí)數(shù)a的取值范圍為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,內(nèi)角A,B,C所對邊分別為a、b、c,其中A=120°,b=1,且△ABC的面積為$\sqrt{3}$,則$\frac{a-b}{sinA-sinB}$=( 。
A.$\sqrt{21}$B.$\frac{2\sqrt{29}}{3}$C.2$\sqrt{21}$D.2$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-mx(m∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)m≥$\frac{3\sqrt{2}}{2}$時(shí),設(shè)g(x)=2f(x)+x2的兩個(gè)極值點(diǎn)x1,x2(x1<x2)恰為h(x)=lnx-cx2-bx的零點(diǎn),求y=(x1-x2)h′($\frac{{x}_{1}+{x}_{2}}{2}$)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,過焦點(diǎn)F的直線與橢圓交于A,B兩點(diǎn),線段AB的中點(diǎn)為M(-$\frac{2}{3}$,$\frac{1}{3}$).
(Ⅰ)求橢圓方程;
(Ⅱ)過點(diǎn)A與橢圓只有一個(gè)公共點(diǎn)的直線為l1,過點(diǎn)F與AF垂直的直線為l2,求證l1與l2的交點(diǎn)在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.正四棱錐的底面面積為4,高為3,設(shè)它的側(cè)棱與底面所成的角為α,則sinα=$\frac{3\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且離心率為$\frac{1}{2}$,點(diǎn)M為橢圓上一動點(diǎn),△F1MF2面積的最大值為$\sqrt{3}$.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點(diǎn)為A1,過右焦點(diǎn)F2的直線l與橢圓相交于A,B兩點(diǎn),連結(jié)A1A,A1B并延長交直線x=4分別于P、Q兩點(diǎn),問$\overrightarrow{P{F}_{2}}$•$\overrightarrow{Q{F}_{2}}$是否為定值?若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案