7.已知集合A={x|y=log2(2-x)},B={x|x-a<0},若A∩B=A,則實數(shù)a的取值范圍是(  )
A.(-∞,-2]B.[-2,+∞)C.(2,+∞)D.[2,+∞)

分析 化簡集合A、B,根據(jù)交集的定義即可求出a的取值范圍.

解答 解:集合A={x|y=log2(2-x)}={x|2-x>0}={x|x<2},
B={x|x-a<0}={x|x<a},
且A∩B=A,
∴A⊆B,
∴a≥2,
∴a的取值范圍是[2,+∞).
故選:D.

點(diǎn)評 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z1=i,z2=3-2i,則復(fù)數(shù)$\frac{z_2}{z_1}$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.曲線f(x)=x3+x-2在P0點(diǎn)處的切線與直線x+4y-1=0垂直,則P0點(diǎn)的坐標(biāo)為( 。
A.(1,0)或(-1,-4)B.(0,1)C.(-1,0)或(1,4)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知拋物線x2=4y的焦點(diǎn)F和點(diǎn)A(-1,6),P為拋物線上一點(diǎn),則|PA|+|PF|的最小值是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列有關(guān)命正確的是( 。
A.命題“若x2=1則x=1”的否命題為“若x2=1,則x≠1”
B.“x=-1是x2-5x-6=0”必要不充分條件
C.命題“?x∈(1,+∞),使是x2+x-1<0”的否定是:“?x∈(1,+∞),均有x2+x-1≥0”
D.命題“已知x,y∈R,若x≠1,或y≠4則x+y≠5”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:?x∈(0,+∞),2x<x2,命題q:?x∈(0,+∞),x+$\frac{1}{x}$-2>0,則.( 。
A.p∨q為假B.p∧q為真C.p∧¬q為真D.p∧¬q為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=cos(x+$\frac{π}{4}$)的一個單調(diào)增區(qū)間是( 。
A.[-$\frac{π}{2},\frac{π}{2}}$]B.[$\frac{π}{2},\frac{3π}{4}}$]C.[$\frac{3π}{4},π}$]D.[π,2π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)y=sin(ωx+φ)(ω>0,φ∈(-$\frac{π}{2}$,$\frac{π}{2}$))的最小正周期為π,且其圖象關(guān)于直線x=$\frac{π}{12}$對稱,則在下面結(jié)論中:
①圖象關(guān)于點(diǎn)($\frac{π}{6}$,0)對稱; 
②圖象關(guān)于點(diǎn)($\frac{π}{3}$,0)對稱;
 ③在[0,$\frac{π}{6}$]上是增函數(shù);
④在[-$\frac{π}{3}$,$\frac{π}{12}$]上是增函數(shù);
⑤由f(x1)=f(x2)=0可得x1-x2必是π的整數(shù)倍.
正確結(jié)論的編號為②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知兩條直線l1:2x-y=0和l2:x+y+2=0.
(1)過點(diǎn)P(1,1)的直線l與l1垂直,求直線l的方程;
(2)若圓M的圓心在直線l1上,與y軸相切,且被直線l2截得的弦長為$\sqrt{2}$,求圓M的方程.

查看答案和解析>>

同步練習(xí)冊答案