【題目】已知8件不同的產品中有3件次品,現(xiàn)對它們一一進行測試,直至找到所有次品.

1)若在第5次測試時找到最后一件次品,則共有多少種不同的測試方法?

2)若至多測試5次就能找到所有次品,則共有多少種不同的測試方法?

【答案】1720種(2936

【解析】

1)由題意可知前四次中有兩件次品兩件正品,第五次為次品,所以選出排列即可.2)至多五次能找到,包括檢測3次都是次品,檢測四次測出3件次品,檢測五次測出3件次品或著檢測五次全是正品,剩下的為次品,以此求出每種情況求和可得結果.

解:(1)若在第五次檢測出最后一件次品,則前四次中有兩件次品兩件正品,第五次為次品.

則不同的檢測方法共有.

2)檢測3次可測出3件次品,不同的測試方法有

檢測4次可測出3件次品,不同的測試方法有種;

檢測5次測出3件次品,分為兩類:一類是恰好第5次測到次品,一類是前5次測到都是正品,不同的測試方法共有種.所以共有936種測試方法

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁、戊和己6人圍坐在一張正六邊形的小桌前,每邊各坐一人.已知:①甲與乙正面相對;②丙與丁不相鄰,也不正面相對.若己與乙不相鄰,則以下選項正確的是(

A.若甲與戊相鄰,則丁與己正面相對B.甲與丁相鄰

C.戊與己相鄰D.若丙與戊不相鄰,則丙與己相鄰

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,試確定此二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對定義在[01]上,并且同時滿足以下兩個條件的函數(shù)fx)稱為G函數(shù).

對任意的x∈[0,1],總有fx≥0;

x1≥0x2≥0,x1+x2≤1時,總有fx1+x2≥fx1+fx2)成立.已知函數(shù)gx=x2hx=2xb是定義在[01]上的函數(shù).

1)試問函數(shù)gx)是否為G函數(shù)?并說明理由;

2)若函數(shù)hx)是G函數(shù),求實數(shù)b組成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為推動文明城市創(chuàng)建,提升城市整體形象,20181230日鹽城市人民政府出臺了《鹽城市停車管理辦法》,201931日起施行.這項工作有利于市民養(yǎng)成良好的停車習慣,幫助他們樹立綠色出行的意識,受到了廣大市民的一致好評.現(xiàn)從某單位隨機抽取80名職工,統(tǒng)計了他們一周內路邊停車的時間t(單位:小時),整理得到數(shù)據(jù)分組及頻率分布直方圖如下:

1)從該單位隨機選取一名職工,試估計這名職工一周內路邊停車的時間少于8小時的概率;

2)求頻率分布直方圖中a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標系中的原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為為實數(shù).

1)求曲線的普通方程和曲線的直角坐標方程;

2)若曲線與曲線有公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)設時,求的導函數(shù)的遞增區(qū)間;

2)設 ,求的單調區(qū)間;

3)若 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四種說法中,

①命題“存在x∈R,x2﹣x>0”的否定是“對于任意x∈R,x2﹣x<0”;

②命題“p且q為真”是“p或q為真”的必要不充分條件;

③已知冪函數(shù)f(x)=xα的圖象經過點(2,),則f(4)的值等于;

④已知向量a=(3,4),b=(2,1),b =(2,1),則向量a在向量b方向上的投影是

其中說法正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)有2個分廠生產某種零件,為了研究兩個分廠生產零件的質量是否有差異,隨機從2個分廠生產的零件中各抽取了500件,具體數(shù)據(jù)如下表所示:

甲廠

乙廠

總計

優(yōu)質品

360

320

680

非優(yōu)質品

140

180

320

總計

500

500

1000

根據(jù)表中數(shù)據(jù)得的觀測值,從而斷定兩個分廠生產零件的質量有差異,那么這種判斷出錯的最大可能性為(

附表:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

A.0.1B.0.01C.0.05D.0.001

查看答案和解析>>

同步練習冊答案