分析 (1)利用待定系數(shù)法,求出圓心坐標(biāo),即可求圓C的方程.
(2)利用勾股定理求出PM,即可求出S,t的最小值為C到直線的距離,即可求出該函數(shù)的最小值.
解答 解:(1)設(shè)圓心為(-3a-3,a),則(-3a-3-1)2+(a-1)2=(-3a-3-2)2+(a+2)2,∴a=-1,
∴圓C的方程為x2+(y+1)2=5;
(2)PM=$\sqrt{{t}^{2}-5}$,∴S=2×$\frac{1}{2}×PM×\sqrt{5}$=$\sqrt{5}•\sqrt{{t}^{2}-5}$,
t的最小值為C到直線的距離,即d=$\frac{|0-4-21|}{5}$=5,
∴S的最小值=$\sqrt{5}•\sqrt{25-5}$=10.
點(diǎn)評(píng) 本題考查圓的方程,考查四邊形面積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2] | B. | (0,2] | C. | [-2,2] | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | .$y+4\sqrt{3}=3x$ | B. | .$y=x-\sqrt{3}$ | C. | $3y-3=\sqrt{3}x$ | D. | .$y-\sqrt{3}=\sqrt{3}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,1) | B. | (-1,3) | C. | (1,+∞) | D. | (-∞,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com