分析 由an-a1>logabn-logab1,可得a1+(n-1)d-a1>loga$\frac{_{n}}{_{1}}$,根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)可知d>logaq,由對(duì)數(shù)函數(shù)的圖象可知:0<a<1時(shí),$d>{log_a}q⇒{a^d}<q$,當(dāng)a>1時(shí),$d>{log_a}q⇒{a^d}>q⇒a>\rootv557db5{q}$,即可求得實(shí)數(shù)a的取值范圍.
解答 解:由an-a1>logabn-logab1,
由等差數(shù)及等比列通項(xiàng)公式可知:a1+(n-1)d-a1>loga$\frac{_{n}}{_{1}}$,
∴(n-1)d>logaqn-1,
∴d>logaq,
當(dāng)0<a<1時(shí),$d>{log_a}q⇒{a^d}<q$成立,
當(dāng)a>1時(shí),$d>{log_a}q⇒{a^d}>q⇒a>\rootzzxr55z{q}$,
綜上可得:$a∈(0,1)∪(\rootvfzx535{q},+∞)$.
點(diǎn)評(píng) 本題考查等比數(shù)列等差數(shù)列的通項(xiàng)公式,考查對(duì)數(shù)的運(yùn)算性質(zhì)及對(duì)數(shù)函數(shù)的圖象,考查數(shù)列與不等式的綜合應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最大值為4且關(guān)于直線$x=-\frac{π}{2}$對(duì)稱 | |
B. | 最大值為4且在$[{-\frac{π}{2}\;\;,\;\;\frac{π}{2}}]$上單調(diào)遞增 | |
C. | 最大值為2且關(guān)于點(diǎn)$({-\frac{π}{2}\;\;,\;\;0})$中心對(duì)稱 | |
D. | 最大值為2且在$[{-\frac{π}{2}\;\;,\;\;\frac{3π}{2}}]$上單調(diào)遞減 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{a}>\frac{1}$ | B. | a2<b2 | C. | a2>b2 | D. | 2a<2b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 99 | B. | 100 | C. | -55 | D. | 98 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20n mile | B. | 20$\sqrt{7}$n mile | C. | 30n mile | D. | 30$\sqrt{7}$n mile |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com