分析 根據(jù)x2+(y-1)2表示圓上的點(x,y)到(0,1)的距離的平方,求出它的最大值,可得x2+y2-2y的最大值.
解答 解:方程x2+y2-4x+3=0,即(x-2)2+y2=1,表示以(2,0)為圓心、半徑等于1的圓.
x2+y2-2y=x2+(y-1)2-1
根據(jù)x2+(y-1)2表示圓上的點(x,y)到(0,1)的距離的平方,故它的最大值是($\sqrt{5}$+1)2=6+2$\sqrt{5}$,
∴x2+y2-2y的最大值為5+2$\sqrt{5}$
故答案為:5+2$\sqrt{5}$.
點評 本題主要考查圓的標(biāo)準(zhǔn)方程,兩點間的距離公式,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,3] | B. | [3,+∞) | C. | [9,+∞) | D. | [3,9] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 | 4 | 5 |
y | 2 | 3 | 4 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{7}$ | B. | 2 | C. | $\frac{4}{7}$ | D. | $\frac{\sqrt{57}}{7}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com