對于正項數(shù)列{an},定義Hn=
n
a1+2a2+3a3+…+nan
,若Hn=
2
n+2
,則數(shù)列{an}的通項公式為
 
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)定義,及Hn=
2
n+2
,可得a1+2a2+…+nan
n(n+2)
2
,再寫一式,兩式相減,即可得到結(jié)論.
解答: 解:∵Hn=
2
n+2
,Hn=
n
a1+2a2+3a3+…+nan
,
∴a1+2a2+…+nan=
n
Hn
=
n(n+2)
2
,
∴a1+2a2+…+nan=
n(n+2)
2
,①
∴a1+2a2+…+(n-1)an-1=
(n-1)(n+1)
2
,②
①-②得nan=n+
1
2
,
∴an=1+
1
2n
,
故答案為:an=1+
1
2n
點評:本題考查新定義,考查數(shù)列的通項,解題的關(guān)鍵是理解新定義,通過再寫一式,兩式相減得到結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2+2x-8≤0},B={x|
2x
x-1
>1},
(1)求(∁RA)∩B;
(2)設(shè)集合C={x|x≥a},若∁R(B∪C)=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ),x∈R(其中ω>0,-π<φ≤π)的最小正周期為6π,且當(dāng)x=
π
2
時,f(x)取得最大值,則(  )
A、f(x)=2sin(
x
3
-
π
3
)
B、f(x)=2sin(
x
3
+
π
3
)
C、f(x)=2sin(
x
3
-
π
6
)
D、f(x)=2sin(
x
3
+
π
6
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
3
x3-
a+1
2
x2+x+b
,其中a,b∈R.
(1)若曲線y=f(x)在點P(2,f(2))處的切線方程為y=5x-4,求f(x)的解析式;
(2)當(dāng)函數(shù)f(x)在x=2處取得極值為
1
3
時,試確定f(x)在區(qū)間[
1
2
,3]
上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x2
x+1
,g(x)=ax+5-2a(a>0).
(1)求f(x)在區(qū)間[0,1]上的值域;
(2)若對于任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)-f(x1)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-x+1的零點所在區(qū)間是( 。
A、(-3,-2)
B、(-2,-1)
C、(-1,0)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在實數(shù)a,使得函數(shù)y=sin2x+acos x+
5
8
a-
3
2
在閉區(qū)間[-
π
2
,
π
3
]
上的最大值是1?若存在,求出對應(yīng)的a值?若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)θ是第二象限角,且sin 
θ
2
+cos 
θ
2
<0,則sin 
θ
2
,cos 
θ
2
,tan 
θ
2
的大小關(guān)系是( 。
A、sin 
θ
2
<cos 
θ
2
<tan 
θ
2
B、cos 
θ
2
<sin 
θ
2
<tan 
θ
2
C、sin 
θ
2
<tan 
θ
2
<cos 
θ
2
D、tan 
θ
2
<sin 
θ
2
<cos 
θ
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是奇函數(shù)又在(0,+∞)上單調(diào)遞減的函數(shù)是( 。
A、y=
1
x
B、y=e-x
C、y=-tanx
D、y=|x|

查看答案和解析>>

同步練習(xí)冊答案