【題目】已知函數f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )單調,則ω的最大值為 .
【答案】9
【解析】解:∵函數f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸, ∴ω(﹣ )+φ=nπ,n∈Z,且ω S+φ=n′π+ ,n′∈Z,
∴相減可得ω =(n′﹣n)π+ =kπ+ ,k∈Z,即ω=2k+1,即ω為奇數.
∵f(x)在( , )單調,
(i)若f(x)在( , )單調遞增,
則ω +φ≥2kπ﹣ ,且ω +φ≤2kπ+ ,k∈Z,
即﹣ω ﹣φ≤﹣2kπ+ ①,且ω +φ≤2kπ+ ,k∈Z ②,
把①②可得 ωπ≤π,∴ω≤12,故有奇數ω的最大值為11.
當ω=11時,﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ=﹣ .
此時f(x)=sin(11x﹣ )在( , )上不單調,不滿足題意.
當ω=9時,﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ= ,
此時f(x)=sin(9x+ )在( , )上單調遞減,不滿足題意;
故此時ω無解.
(ii)若f(x)在( , )單調遞減,
則ω +φ≥2kπ+ ,且ω +φ≤2kπ+ ,k∈Z,
即﹣ω ﹣φ≤﹣2kπ﹣ ③,且ω +φ≤2kπ+ ,k∈Z ④,
把③④可得 ωπ≤π,∴ω≤12,故有奇數ω的最大值為11.
當ω=11時,﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ=﹣ .
此時f(x)=sin(11x﹣ )在( , )上不單調,不滿足題意.
當ω=9時,﹣ +φ=kπ,k∈Z,∵|φ|≤ ,∴φ= ,
此時f(x)=sin(9x+ )在( , )上單調遞減,滿足題意;
故ω的最大值為9.
故答案為:9.
先跟據正弦函數的零點以及它的圖象的對稱性,判斷ω為奇數,由f(x)在( , )單調,分f(x)在( , )單調遞增、單調遞減兩種情況,分別求得ω的最大值,綜合可得它的最大值.
科目:高中數學 來源: 題型:
【題目】下列命題,其中說法錯誤的是( )
A.雙曲線 的焦點到其漸近線距離為
B.若命題p:?x∈R,使得sinx+cosx≥2,則¬p:?x∈R,都有sinx+cosx<2
C.若p∧q是假命題,則p、q都是假命題
D.設a,b是互不垂直的兩條異面直線,則存在唯一平面α,使得a?α,且b∥α
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正三棱柱ABC﹣A1B1C1中,AB=2,AA1=3,點D為BC的中點;
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)若點E為A1C上的點,且滿足 =m (m∈R),若二面角E﹣AD﹣C的余弦值為 ,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x﹣1)ex+ax2有兩個零點 (Ⅰ)當a=1時,求f(x)的最小值;
(Ⅱ)求a的取值范圍;
(Ⅲ)設x1 , x2是f(x)的兩個零點,證明:x1+x2<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且Sn=2an﹣2(n∈N*).
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足 = ﹣ ﹣…+(﹣1)n+1 ,求數列{bn}的通項公式;
(3)在(2)的條件下,設cn=2n+λbn , 問是否存在實數λ使得數列{cn}(n∈N*)是單調遞增數列?若存在,求出λ的取值范圍;若不存在,請說明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項數列{an}的前n項和為Sn , 且 是1與an的等差中項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設Tn為數列{ }的前n項和,證明: <Tn<1(n∈N*)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程選講]
已知曲線C1的極坐標方程為ρ2cos2θ=8,曲線C2的極坐標方程為 ,曲線C1、C2相交于A、B兩點.
(Ⅰ)求A、B兩點的極坐標;
(Ⅱ)曲線C1與直線 (t為參數)分別相交于M,N兩點,求線段MN的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高中為了推進新課程改革,滿足不同層次學生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設數學、物理、化學、生物和信息技術輔導講座,每位有興趣的同學可以在期間的任何一天參加任何一門科目的輔導講座,也可以放棄任何一門科目的輔導講座.(規(guī)定:各科達到預先設定的人數時稱為滿座,否則稱為不滿座)統(tǒng)計數據表明,各學科講座各天的滿座的概率如下表:
信息技術 | 生物 | 化學 | 物理 | 數學 | |
周一 | |||||
周三 | |||||
周五 |
根據上表:
(1)求數學輔導講座在周一、周三、周五都不滿座的概率;
(2)設周三各輔導講座滿座的科目數為ξ,求隨機變量ξ的分布列和數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com