20.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.98B.99C.100D.101

分析 根據(jù)程序框圖以及循環(huán)的規(guī)律,利用條件可得結(jié)論.

解答 解:i=1,s=lg$\frac{1}{2}$>-2,
i=2,s=lg$\frac{1}{3}$>-2,
i=3,s=lg$\frac{1}{4}$>-2,
…,
i=99,s=lg$\frac{1}{100}$≤-2,
輸出i=99,
故選:B.

點(diǎn)評(píng) 本題考查了程序框圖中的循環(huán)結(jié)構(gòu)的應(yīng)用,解題的關(guān)鍵是由框圖的結(jié)構(gòu)判斷出框圖的計(jì)算功能.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.沿一個(gè)正方體三個(gè)面的對(duì)角線截得的幾何體如圖所示,若正視圖的視線方向與前面的三角形面垂直,則該幾何體的左視圖為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{3}$x3-alnx-$\frac{1}{3}$(a∈R,a≠0)
(1)當(dāng)a=3時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若對(duì)任意的x∈[1,+∞),都有f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)a,b,c分別是△ABC三個(gè)內(nèi)角∠A,∠B,∠C的對(duì)邊,若向量$\overrightarrow m=({1-cos(A+B),cos\frac{A-B}{2}})$,$\overrightarrow n=({\frac{5}{8},cos\frac{A-B}{2}})$,且$\overrightarrow m•\overrightarrow n=\frac{9}{8}$.
(1)求tanA•tanB的值;
(2)求$\frac{{2{S_{△ABC}}}}{{{a^2}+{b^2}-{c^2}}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如果執(zhí)行如圖所示的程序框圖,那么輸出的k=5.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.直線$l:\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù))與圓C:(x+6)2+y2=25交于A,B兩點(diǎn),且$|{AB}|=\sqrt{10}$,則直線l的斜率為±$\frac{\sqrt{15}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)橢圓$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右頂點(diǎn)為A,右焦點(diǎn)為F,B為橢圓E在第二象限上的點(diǎn),直線OB交橢圓E于點(diǎn)C,若直線FB平分線段AC,則橢圓E的離心率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)Tn為數(shù)列{an}的前n項(xiàng)之積,即Tn=a1a2a3…an-1an,若${a_1}=2,\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1$,當(dāng)Tn=11時(shí),n的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將函數(shù)f(x)=sin2x的圖象沿x軸向右平移φ(φ>0)個(gè)單位長度后得到函數(shù)g(x)的圖象,若函數(shù)g(x)的圖象關(guān)于y軸對(duì)稱,則當(dāng)φ取最小的值時(shí),g(0)=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案