9.設(shè)Tn為數(shù)列{an}的前n項(xiàng)之積,即Tn=a1a2a3…an-1an,若${a_1}=2,\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1$,當(dāng)Tn=11時(shí),n的值為10.

分析 由題意可得數(shù)列{$\frac{1}{{a}_{n}-1}$}是以$\frac{1}{{a}_{1}-1}=1$為首項(xiàng),以1為公差的等差數(shù)列,求其通項(xiàng)公式,可得數(shù)列{an}的通項(xiàng)公式,再由累積法求得Tn,則答案可求.

解答 解:由${a_1}=2,\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1$,
可得數(shù)列{$\frac{1}{{a}_{n}-1}$}是以$\frac{1}{{a}_{1}-1}=1$為首項(xiàng),以1為公差的等差數(shù)列,
則$\frac{1}{{a}_{n}-1}=1+(n-1)×1=n$,
∴${a}_{n}=1+\frac{1}{n}=\frac{n+1}{n}$,
則Tn=a1a2a3…an-1an=$\frac{2}{1}•\frac{3}{2}…\frac{n+1}{n}=n+1$,
由Tn=n+1=11,得n=10.
故答案為:10.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,訓(xùn)練了利用累積法求數(shù)列的通項(xiàng)公式,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.10B.15C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(  )
A.98B.99C.100D.101

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩焦點(diǎn)分別為雙曲線${C_2}:\frac{x^2}{2}-{y^2}=1$的頂點(diǎn),直線$x+\sqrt{2}y=0$與橢圓C1交于A,B兩點(diǎn),且點(diǎn)A的坐標(biāo)為$(-\sqrt{2},1)$,點(diǎn)P是橢圓C1上的任意一點(diǎn),點(diǎn)Q滿足$\overrightarrow{AQ}•\overrightarrow{AP}=0$,$\overrightarrow{BQ}•\overrightarrow{BP}=0$.
(1)求橢圓C1的方程;
(2)求點(diǎn)Q的軌跡方程;
(3)當(dāng)A,B,Q三點(diǎn)不共線時(shí),求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.為了響應(yīng)國(guó)家發(fā)展足球的戰(zhàn)略,哈市某校在秋季運(yùn)動(dòng)會(huì)中,安排了足球射門比賽.現(xiàn)有10名同學(xué)參加足球射門比賽,已知每名同學(xué)踢進(jìn)的概率均為0.6,每名同學(xué)有2次射門機(jī)會(huì),且各同學(xué)射門之間沒(méi)有影響.現(xiàn)規(guī)定:踢進(jìn)兩個(gè)得10分,踢進(jìn)一個(gè)得5分,一個(gè)未進(jìn)得0分,記X為10個(gè)同學(xué)的得分總和,則X的數(shù)學(xué)期望為( 。
A.30B.40C.60D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知兩點(diǎn)$A(-\sqrt{2},0),B(\sqrt{2},0)$,動(dòng)點(diǎn)P在y軸上的投影是Q,且$2\overrightarrow{PA}•\overrightarrow{PB}=|\overrightarrow{PQ}{|^2}$.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)F(1,0)作互相垂直的兩條直線交軌跡C于點(diǎn)G,H,M,N,且E1,E2分別是GH,MN的中點(diǎn).求證:直線E1E2恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.過(guò)圓x2+y2=16上一點(diǎn)P作圓O:x2+y2=m2(m>0)的兩條切線,切點(diǎn)分別為A、B,若$∠AOB=\frac{2}{3}π$,則實(shí)數(shù)m=( 。
A.2B.3C.4D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.直線$\left\{\begin{array}{l}{x=t-1}\\{y=2-t}\end{array}\right.$(t為參數(shù))與曲線$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù))的交點(diǎn)個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.對(duì)函數(shù)f(x)=$\frac{cosx+m}{cosx+2}$,若?a,b,c∈R,f(a),f(b),f(c)都為某個(gè)三角形的三邊長(zhǎng),則實(shí)數(shù)m的取值范圍是(  )
A.$(\;\frac{5}{4}\;,\;6\;)$B.$(\;\frac{5}{3}\;,\;6\;)$C.$(\;\frac{7}{5}\;,\;5\;)$D.$(\;\frac{5}{4}\;,\;5\;)$

查看答案和解析>>

同步練習(xí)冊(cè)答案