【題目】已知二次函數(shù).
(1)若是的兩個(gè)不同零點(diǎn),是否存在實(shí)數(shù),使成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
(2)設(shè),函數(shù),存在個(gè)零點(diǎn).
(i)求的取值范圍;
(ii)設(shè)分別是這個(gè)零點(diǎn)中的最小值與最大值,求的最大值.
【答案】(1) 不存在.理由見(jiàn)解析;
(2) (i) (ii)
【解析】
(1) .假設(shè)存在實(shí)數(shù)滿足題意,由韋達(dá)定理可得:,解得,又,即,綜合可得假設(shè)不成立;
(2) (i)作出函數(shù)的圖象,觀察圖像即可求出的取值范圍;
(ii)設(shè)直線與此圖象的最左邊和最右邊的交點(diǎn)分別為.即,因?yàn)?/span>,代入運(yùn)算可得解.
解:(1)依題意可知,.假設(shè)存在實(shí)數(shù),使成立.
因?yàn)?/span>有兩個(gè)不同零點(diǎn),.
所以,解得.
由韋達(dá)定理得
所以
解得,而,故不存在.
(2)因?yàn)?/span>,設(shè),則,
當(dāng)時(shí),;當(dāng)時(shí),.
(i)作出函數(shù)的圖象,如圖所示,所以.
(ii)設(shè)直線與此圖象的最左邊和最右邊的交點(diǎn)分別為.
由,得
由,得
所以
因?yàn)?/span>,
所以當(dāng)時(shí),取得最大值.
故的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地電影院為了了解當(dāng)?shù)赜懊詫?duì)快要上映的一部電影的票價(jià)的看法,進(jìn)行了一次調(diào)研,得到了票價(jià)x(單位:元)與渴望觀影人數(shù)y(單位:萬(wàn)人)的結(jié)果如下表:
x(單位:元) | 30 | 40 | 50 | 60 |
y(單位:萬(wàn)人) | 4.5 | 4 | 3 | 2.5 |
(1)若y與x具有較強(qiáng)的相關(guān)關(guān)系,試分析y與x之間是正相關(guān)還是負(fù)相關(guān);
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)根據(jù)(2)中求出的線性回歸方程,預(yù)測(cè)票價(jià)定為多少元時(shí),能獲得最大票房收入.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究學(xué)生的數(shù)學(xué)核素養(yǎng)與抽象(能力指標(biāo))、推理(能力指標(biāo))、建模(能力指標(biāo))的相關(guān)性,并將它們各自量化為1、2、3三個(gè)等級(jí),再用綜合指標(biāo)的值評(píng)定學(xué)生的數(shù)學(xué)核心素養(yǎng),若,則數(shù)學(xué)核心素養(yǎng)為一級(jí);若,則數(shù)學(xué)核心素養(yǎng)為二級(jí);若,則數(shù)學(xué)核心素養(yǎng)為三級(jí),為了了解某校學(xué)生的數(shù)學(xué)核素養(yǎng),調(diào)查人員隨機(jī)訪問(wèn)了某校10名學(xué)生,得到如下:
(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同的概率;
(2)從數(shù)學(xué)核心素養(yǎng)等級(jí)是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為,從數(shù)學(xué)核心素養(yǎng)等級(jí)不是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為,記隨機(jī)變量,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,,分別為,的中點(diǎn),點(diǎn)是上底面內(nèi)一點(diǎn),且平面,則的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng),求函數(shù)的圖象在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是定義在上的增函數(shù),實(shí)數(shù)使得對(duì)于任意都成立,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量=(2sinx,-1),,函數(shù)f(x)=.
(1)求函數(shù)f(x)的對(duì)稱中心;
(2)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊為a,b,c,且a2=bc,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】向50名學(xué)生調(diào)查對(duì)A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對(duì)A、B都不贊成的學(xué)生數(shù)比對(duì)A、B都贊成的學(xué)生數(shù)的三分之一多1人. 問(wèn)對(duì)A、B都贊成的學(xué)生有____________人
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)的解析式為= (直接寫出結(jié)果即可);
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com