【題目】如圖,已知兩條拋物線E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),過原點O的兩條直線l1和l2 , l1與E1 , E2分別交于A1、A2兩點,l2與E1、E2分別交于B1、B2兩點.

(1)證明:A1B1∥A2B2;
(2)過O作直線l(異于l1 , l2)與E1、E2分別交于C1、C2兩點.記△A1B1C1與△A2B2C2的面積分別為S1與S2 , 求 的值.

【答案】
(1)證明:由題意可知,l1和l2的斜率存在且不為0,

設(shè)l1:y=k1x,l2:y=k2x.

聯(lián)立 ,解得

聯(lián)立 ,解得

聯(lián)立 ,解得

聯(lián)立 ,解得

,

,

∴A1B1∥A2B2;


(2)解:由(1)知A1B1∥A2B2

同(1)可證B1C1∥B2C2,A1C1∥A2C2

∴△A1B1C1∽△A2B2C2,

因此 ,


【解析】(1)由題意設(shè)出直線l1和l2的方程,然后分別和兩拋物線聯(lián)立求得交點坐標,得到 的坐標,然后由向量共線得答案;(2)結(jié)合(1)可知△A1B1C1與△A2B2C2的三邊平行,進一步得到兩三角形相似,由相似三角形的面積比等于相似比的平方得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟的發(fā)展,我市居民收入逐年增長,下表是我市一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額):

年份

2011

2012

2013

2014

2015

儲蓄存款(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,,

(1)填寫下列表格并根據(jù)表格求關(guān)于的線性回歸方程;

時間代號

(2)通過(Ⅰ)中的方程,求出關(guān)于的回歸方程,并用所求回歸方程預(yù)測到2020年年底,該銀行儲蓄存款額可達多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表提供了某廠節(jié)能降耗技術(shù)改造后,生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù)

x

3

4

5

6

y

2.5

3

4

4.5

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤試根據(jù)(2)求出的回歸直線方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?

注: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為 ,乙獲勝的概率為 ,各局比賽結(jié)果相互獨立.
(1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;
(2)記X為比賽決勝出勝負時的總局數(shù),求X的分布列和均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,拋物線的方程為

(1)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,求的極坐標方程;

(2)直線的參數(shù)方程是為參數(shù)),交于兩點, ,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廈門市從2003年起每年都舉行國際馬拉松比賽,每年馬拉松比賽期間,都會吸引許多外地游客到廈門旅游,這將極大地推進廈門旅游業(yè)的發(fā)展,旅游部門將近六年馬拉松比賽期間外地游客數(shù)量統(tǒng)計如下表:

年份

2012

2013

2014

2015

2016

2017

比賽年份編號

外地游客人數(shù)(萬人)

(1)若用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;(精確到

(2)若用對數(shù)回歸模型擬合的關(guān)系,可得回歸方程,且相關(guān)指數(shù),請用相關(guān)指數(shù)說明選擇哪個模型更合適.(精確到

參考數(shù)據(jù):,,

參考公式:回歸方程中,,;相關(guān)指數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,兩點,且圓心在直線上.

(1)求圓的方程;

(2)若直線過點且被圓截得的線段長為,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)年至年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如表:

年份

2009

2010

2011

2012

2013

2014

2015

年份代號

1

2

3

4

5

6

7

人均純收入

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,分析年至年該地區(qū)農(nóng)村居民家庭人純收入的變化情況,并預(yù)測該地區(qū)年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,且分別為線段的中點,沿折起,使,得到如下的立體圖形.

(1)證明:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案