19.設(shè)Sn為等差數(shù)列{an}的前n項和,S8=4a3,a7=-2,則a9=( 。
A.-6B.-4C.-2D.2

分析 利用等差數(shù)列有前n項和公式和通項公式,列出方程組,求出首項和公差,由此能求出第9項.

解答 解:∵Sn為等差數(shù)列{an}的前n項和,
S8=4a3,a7=-2,
∴$\left\{\begin{array}{l}{8{a}_{1}+\frac{8×7}{2}d=4({a}_{1}+2d)}\\{{a}_{1}+6d=-2}\end{array}\right.$,
解得a1=10,d=-2,
∴a9=a1+8d=10-16=-6.
故選:A.

點評 本題考查等差數(shù)列的第9項的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知全集U=R,集合A={x|x2-2x-3>0},B={x|4-x2≤0},求:
(1)A∩B;
(2)(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右交點分別為F1,F(xiàn)2,且|F1F2|=4$\sqrt{3}$,A($\sqrt{3}$,-$\frac{\sqrt{13}}{2}$)是橢圓上一點.
(1)求橢圓C的標(biāo)準(zhǔn)方程和離心率e的值;
(2)若T為橢圓C上異于頂點的任意一點,M,N分別為橢圓的右頂點和上頂點,直線TM與y軸交于點P,直線TN與x軸交于點Q,求證:|PN|•|QM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,短軸的一個端點到右焦點的距離是$\sqrt{3}$
(1)求橢圓C的方程;
(2)直線y=x+1交橢圓于A、B兩點,P為橢圓上的一點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的一個對稱中心為($\frac{π}{3}$,0),則要得到函數(shù)y=f′(x)的圖象,只需把函數(shù)f(x)的圖象(  )
A.沿x軸向左平移$\frac{π}{2}$個單位,縱坐標(biāo)伸長為原來的2倍
B.沿x軸向右平移$\frac{π}{2}$個單位,縱坐標(biāo)伸長為原來的2倍
C.沿x軸向左平移$\frac{π}{4}$個單位,縱坐標(biāo)伸長為原來的2倍
D.沿x軸向右平移$\frac{π}{4}$個單位,縱坐標(biāo)伸長為原來的2倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(2cosx,1),\overrightarrow n=(cosx,\sqrt{3}sin2x),x∈R$
(1)求出f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)求f(x)在[$-\frac{π}{6},\frac{π}{4}]$上最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{{m}^{2}}=1(m>0)$的離心率為$\sqrt{3}$,則m的值為( 。
A.$2\sqrt{2}$B.$\sqrt{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線ax+by-1=0(ab>0)經(jīng)過圓x2+y2-2x-4y=0的圓心,則$\frac{1}{a}+\frac{2}$最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在六條棱長分別為2、3、3、4、5、5的所有四面體中,最大的體積是( 。
A.$\frac{{8\sqrt{2}}}{3}$B.$\frac{{5\sqrt{11}}}{6}$C.$\frac{{\sqrt{462}}}{4}$D.$2\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案