11.已知雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{{m}^{2}}=1(m>0)$的離心率為$\sqrt{3}$,則m的值為( 。
A.$2\sqrt{2}$B.$\sqrt{2}$C.3D.$\sqrt{3}$

分析 利用雙曲線方程,轉(zhuǎn)化求解離心率即可.

解答 解:由雙曲線的方程$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{{m}^{2}}=1,m>0$,
知$\frac{{\sqrt{4+{m^2}}}}{2}=\sqrt{3}$,所以$m=2\sqrt{2}$,
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知復(fù)數(shù)$z=\frac{1-3i}{1+i}$,則復(fù)數(shù)z的虛部為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在一次跳傘訓(xùn)練中,甲、乙兩位學(xué)員各跳一次,設(shè)命題p是“甲降落在指定范圍”,q是“乙降落在指
定范圍”,則命題“至少有一位學(xué)員沒(méi)有降落在指定范圍”可表示為(?p)∨(?q).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,S8=4a3,a7=-2,則a9=( 。
A.-6B.-4C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+m({x+1})+lnx$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)存在兩個(gè)極值點(diǎn)α,β,且α<β,若f(α)<b+1恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.下列各式正確的是①②④
①{a}⊆{a}  ②{1,2,3}={3,1,2}     ③0⊆{0}      ④∅⊆{0}  ⑤{1}∈{x|x≤5}   ⑥{1,3}⊆{3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求適合下列條件的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在x軸上,與橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$具有相同的離心率且過(guò)點(diǎn)(2,-$\sqrt{3}$)的橢圓的標(biāo)準(zhǔn)方程;
(2)焦點(diǎn)在y軸上,焦距是16,離心率$e=\frac{4}{3}$的雙曲線標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥2\\ 2x+y≥2\\ x-y≤2\end{array}\right.$目標(biāo)函數(shù)z=x-2y的最大值是( 。
A.-4B.2C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.定義2×2矩陣$[\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}]$=a1a4-a2a3,若f(x)=$[\begin{array}{l}{cosx-sinx}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{cosx+sinx}\end{array}]$,則f(x)( 。
A.圖象關(guān)于(π,0)中心對(duì)稱B.圖象關(guān)于直線$x=\frac{π}{2}$對(duì)稱
C.在區(qū)間$[-\frac{π}{6},0]$上單調(diào)遞增D.周期為π的奇函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案