【題目】填空:
(1)如果,且,則是第________象限角;
(2)如果,且,則是第________象限角;
(3)如果,且,則是第________象限角;
(4)如果,且,則是第________象限角.
【答案】二 三 四 四
【解析】
(1)由三角函數(shù)的正負(fù),判斷角所在的象限;
(2)由三角函數(shù)的正負(fù),判斷角所在的象限;
(3)由三角函數(shù)的正負(fù),判斷角所在的象限;
(4)由三角函數(shù)的正負(fù),判斷角所在的象限.
(1),角在第一,二象限和軸非負(fù)半軸,
,角在第二,第三象限和軸非正半軸,
綜上可知滿足,且,則是第二象限;
(2),角在第一,三象限,
,角在第二,第三象限和軸非正半軸,
綜上可知滿足,且,則是第三象限角;
(3),角在第三,四象限和軸非正半軸,
,角在第二,四象限,
綜上可知,滿足,且,則是第四象限;/span>
(4),角在第一,第四象限和軸非負(fù)半軸,
,角在第三,四象限和軸非正半軸,
綜上可知,滿足,且,則是第四象限.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某保險(xiǎn)公司擬推出某種意外傷害險(xiǎn),每位參保人交付元參保費(fèi),出險(xiǎn)時(shí)可獲得萬(wàn)元的賠付,已知一年中的出險(xiǎn)率為,現(xiàn)有人參保.
(1)求保險(xiǎn)公司獲利在(單位:萬(wàn)元)范圍內(nèi)的概率(結(jié)果保留小數(shù)點(diǎn)后三位);
(2)求保險(xiǎn)公司虧本的概率.(結(jié)果保留小數(shù)點(diǎn)后三位)
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的圖象與直線沒(méi)有交點(diǎn),求的取值范圍;
(2)設(shè),若函數(shù)與的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形的邊長(zhǎng)為,將沿對(duì)角線折起,使平面平面,得到如圖所示的三棱錐,若為邊的中點(diǎn),分別為上的動(dòng)點(diǎn)(不包括端點(diǎn)),且,設(shè),則三棱錐的體積取得最大值時(shí),三棱錐的內(nèi)切球的半徑為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,拋物線與橢圓在第一線象限的交點(diǎn)為.
(1)求曲線、的方程;
(2)在拋物線上任取一點(diǎn),在點(diǎn)處作拋物線的切線,若橢圓上存在兩點(diǎn)關(guān)于直線對(duì)稱,求點(diǎn)的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果有一天我們分居異面直線的兩頭,那我一定穿越時(shí)空的阻隔,畫(huà)條公垂線向你沖來(lái),一刻也不愿逗留.如圖1所示,在梯形中,//,且,,分別延長(zhǎng)兩腰交于點(diǎn),點(diǎn)為線段上的一點(diǎn),將沿折起到的位置,使,如圖2所示.
(1)求證:;
(2)若,,四棱錐的體積為,求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列說(shuō)法是否正確,若錯(cuò)誤,請(qǐng)舉出反例
(1)互斥的事件一定是對(duì)立事件,對(duì)立事件不一定是互斥事件;
(2)互斥的事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件;
(3)事件與事件B中至少有一個(gè)發(fā)生的概率一定比與B中恰有一個(gè)發(fā)生的概率大;
(4)事件與事件B同時(shí)發(fā)生的概率一定比與B中恰有一個(gè)發(fā)生的概率小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com