A. | x+y-4=0 | B. | x-y+4=0 | C. | 2x+y-6=0 | D. | x+2y-6=0 |
分析 設出直線方程,求出b=2-2k,表示出|OA|+|OB|,根據(jù)基本不等式,求出k的值,從而求出b的值,求出直線方程即可.
解答 解:設直線方程是:y=kx+b,
將P(2,2)代入方程得:2k+b=2,
即:b=2-2k,
而|OA|+|OB|=b(1-$\frac{1}{k}$)=(2-2k)(1-$\frac{1}{k}$)=2(2-$\frac{1}{k}$-k)=4+2(-k-$\frac{1}{k}$)≥4+2•2$\sqrt{-\frac{1}{k}•(-k)}$,
當且僅當-$\frac{1}{k}$=-k即k=-1時,|OA|+|OB|取到最小值,
此時b=2+2=4,
故直線方程是:y=-x+4即x+y-4=0,
故選:A.
點評 本題考查了求直線方程問題,考查基本不等式的性質,是一道中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{2\sqrt{5}}}{5}$ | B. | $-\frac{{\sqrt{5}}}{5}$ | C. | $-\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com