【題目】著名數(shù)學(xué)家華羅庚先生曾說過:“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微數(shù)形結(jié)合百般好,隔裂分家萬事休.”在數(shù)學(xué)的學(xué)習(xí)和研究中,我們經(jīng)常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也經(jīng)常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征,如某體育品牌的LOGO,可抽象為如圖所示的軸對(duì)稱的優(yōu)美曲線,下列函數(shù)中,其圖象大致可“完美”局部表達(dá)這條曲線的函數(shù)是( )

A.B.

C.D.

【答案】C

【解析】

首先根據(jù)奇偶性的判斷可知,選項(xiàng)BD不符題意,然后利用特值法,在范圍內(nèi)代入一個(gè)特值,即可得出正確答案.

觀察圖象可知,函數(shù)的圖象關(guān)于y軸對(duì)稱,

對(duì)于A選項(xiàng),,為偶函數(shù),

對(duì)于B選項(xiàng),,為奇函數(shù),

對(duì)于C選項(xiàng),,為偶函數(shù),

對(duì)于D選項(xiàng),,為奇函數(shù),

而選項(xiàng)BD為奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,不合題意;

對(duì)選項(xiàng)A而言,當(dāng)時(shí),如取,,則有,fx)<0,不合題意;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,焦點(diǎn)在軸上的橢圓與焦點(diǎn)在軸上的橢圓都過點(diǎn),中心都在坐標(biāo)原點(diǎn),且橢圓的離心率均為

求橢圓與橢圓的標(biāo)準(zhǔn)方程;

Ⅱ)過點(diǎn)M的互相垂直的兩直線分別與,交于點(diǎn)A,B(點(diǎn)A、B不同于點(diǎn)M),當(dāng)的面積取最大值時(shí),求兩直線MA,MB斜率的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,,,以為軸將旋轉(zhuǎn),形成三棱錐

(Ⅰ)求證:;

(Ⅱ)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的四個(gè)頂點(diǎn),過E的左焦點(diǎn)F且不與坐標(biāo)軸垂直的直線lE交于A,B兩點(diǎn),線段AB的垂直平分線mx軸,y軸分別交于MN兩點(diǎn),交線段AB于點(diǎn)C.

1)求E的方程;

2)設(shè)O為坐標(biāo)原點(diǎn),記的面積為的面積為,且,當(dāng)時(shí),求l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足,an+23an+12an,a11,a23,記bn,Sn為數(shù)列{bn}的前n項(xiàng)和.

1)求證:{an+1an}為等比數(shù)列,并求an;

2)求證:Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxtx+t.

1)討論fx)的單調(diào)性;

2)當(dāng)t=2時(shí),方程fx)=max恰有兩個(gè)不相等的實(shí)數(shù)根x1,x2,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)整數(shù)滿足..f的最小值f0.并確定使f=f0成立的數(shù)組的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,P是橢圓的上頂點(diǎn),過點(diǎn)P作斜率為的直線l交橢圓于另一點(diǎn)A,設(shè)點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B

1)求面積的最大值;

2)設(shè)線段PB的中垂線與y軸交于點(diǎn)N,若點(diǎn)N在橢圓內(nèi)部,求斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知正方體的棱長(zhǎng)為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案