11.已知集合A={x|1<x<3},B={x|y=log2(2-x)},則A∩B=( 。
A.(0,3)B.(0,1)C.(1,2)D.(2,3)

分析 根據(jù)題意和交集的運算直接求出A∩B.

解答 解:集合A={x|1<x<3}=(1,3),
B={x|y=log2(2-x)}=(-∞,2),
則A∩B=(1,2),
故選:C.

點評 本題考查交集及其運算,以及對數(shù)函數(shù)的定義域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)Z=$\frac{1}{1+i}+{i^3}$(i為虛數(shù)單位),則復(fù)數(shù)Z的模為(  )
A.2B.$\frac{10}{4}$C.$\frac{{\sqrt{10}}}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.全集為實數(shù)集R,集合M={x||x|≤3},集合N={x|x<2},則(∁RM)∩N=( 。
A.{x|x<-3}B.{x|-3<x<2}C.{x|x<2}D.{x|-3≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sinCcosB=2sinA+sinB,c=3ab,則ab的最小值是( 。
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{2+\sqrt{3}}{9}$D.$\frac{2-\sqrt{3}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在平面直角坐標系xOy中,已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{5}$,從C的右焦點F引漸近線的垂線,垂足為A,若△AFO的面積為1,則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和Sn=2(an-1),等差數(shù)列{bn}滿足b1=a1,b4=a3,其中n∈N*.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若Cn=(-1)nbnbn+1,求數(shù)列{cn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.將函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象向左平移φ(φ>0)個單位后,恰好得到函數(shù)的y=sin2x的圖象,則φ的最小值為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}為等差數(shù)列,a1=sinθ(-$\frac{π}{2}$≤θ≤$\frac{π}{2}$),a5=a3+1,且其前10項和S10=$\frac{55}{2}$.
(1)求θ的值;
(2)求數(shù)列bn=an+($\frac{1}{2}$)${\;}^{2{a}_{n}}$的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow$=(cosθ,$\frac{1}{2}$),且$\overrightarrow{a}$∥$\overrightarrow$,則2cos($\frac{3π}{2}$+2θ)+$\frac{1}{2}$cos2θ的值為(  )
A.$\frac{13}{10}$B.$\frac{19}{10}$C.$\frac{3}{2}$D.-2

查看答案和解析>>

同步練習(xí)冊答案