A. | $\frac{1}{9}$ | B. | $\frac{1}{3}$ | C. | $\frac{2+\sqrt{3}}{9}$ | D. | $\frac{2-\sqrt{3}}{9}$ |
分析 由三角內(nèi)角和定理,將原式轉(zhuǎn)化成2sinCcosB=2sin(B+C)+sinB,利用兩角和的正弦公式,求得cosC=-$\frac{1}{2}$,再根據(jù)余弦定理及基本不等式,求得ab的最小值.
解答 解:在△ABC中,由A+B+C=π知,sinA=sin[π-(B+C)]=sin(B+C),
2sinCcosB=2sinA+sinB,
∴2sinCcosB=2sin(B+C)+sinB,
∴2sinCcosB-2sinBcosC-2cosBsinC=sinB,
∴-2sinBcosC=sinB,
由sinB>0,
∴cosC=-$\frac{1}{2}$,
∵c=3ab,
∴由余弦定理可得c2=a2+b2-2ab•cosC,
整理可得9a2b2=a2+b2+ab≥3ab,當(dāng)且僅當(dāng)a=b取等號,
∴ab≥$\frac{1}{3}$,則ab的最小值是$\frac{1}{3}$.
故選:B.
點評 本題主要考查正弦定理和余弦定理的應(yīng)用,誘導(dǎo)公式、兩角和的正弦公式、基本不等式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
網(wǎng)購達(dá)人 | 非網(wǎng)購達(dá)人 | 合計 | |
男性 | 30 | ||
女性 | 12 | 30 | |
合計 | 60 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 12 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,3) | B. | (0,1) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com