分析 先求函數(shù)的定義域設(shè)u(x)=x2-5x+6則f(x)=lnu(x),因為對數(shù)函數(shù)的底數(shù)e>1,則對數(shù)函數(shù)為單調(diào)遞增函數(shù),要求f(x)函數(shù)的增區(qū)間只需求二次函數(shù)的增區(qū)間即可.
解答 解:由題意x2-5x+6>0,可得函數(shù)f(x)的定義域是(-∞,2)∪(3,+∞),
令u(x)=x2-5x+6的增區(qū)間為(3,+∞),
∵e>1,
∴函數(shù)f(x)的單調(diào)增區(qū)間為(3,+∞),
故答案為:(3,+∞).
點評 此題考查學(xué)生求對數(shù)函數(shù)及二次函數(shù)增減性的能力,以及會求復(fù)合函數(shù)的增減性的能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 28 | B. | 76 | C. | 123 | D. | 199 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-∞,-\frac{1}{3}})$ | B. | $[{-\frac{1}{3},+∞})$ | C. | $({-\frac{1}{3},+∞})$ | D. | $({-∞,-\frac{1}{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+2$\sqrt{2}$ | B. | 2 | C. | 4+4$\sqrt{2}$ | D. | 6+4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com